2.函數(shù)y=tan($\frac{x}{3}$+$\frac{π}{4}$)的最小正周期為( 。
A.$\frac{π}{3}$B.C.$\frac{2π}{3}$D.

分析 利用y=Atan(ωx+φ)的周期等于 T=$\frac{π}{ω}$,得出結論.

解答 解:函數(shù)y=tan($\frac{x}{3}$+$\frac{π}{4}$)的最小正周期為$\frac{π}{\frac{1}{3}}$=3π,
故選:B.

點評 本題主要考查三角函數(shù)的周期性及其求法,利用了y=Atan(ωx+φ)的周期等于 T=$\frac{π}{ω}$,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.設函數(shù)f(x)=alnx-bx2
(Ⅰ)若函數(shù)f(x)在x=1處與直線$y=-\frac{1}{2}$相切,求函數(shù)$f(x)在[{\frac{1}{e},e}]$上的最大值.
(Ⅱ)當b=0時,若不等式f(x)≥m+x對所有的$a∈[{0,\frac{3}{2}}]$,x∈(1,e2]都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.學校對高二、高三年級的1000名男生的體重進行調查,設每個男生的體重為x公斤,調查所得數(shù)據(jù)用如圖所示的程序框圖處理,若輸出的結果是380,則體重在60公斤(包括60公斤)以內的男生的頻率是( 。
A.380B.620C.$\frac{19}{50}$D.$\frac{31}{50}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知點P(x0,8)是拋物線y2=8x上一點,則點P到其焦點的距離為10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知拋物線C:y2=2px(p>0)的準線方程為x=-2,則拋物線C的方程為y2=8x; 若某雙曲線的一個焦點與拋物線C的焦點重合,且漸近線方程為y=±$\sqrt{3}$x,則此雙曲線的方程為${x}^{2}-\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設函數(shù)f(x)=x2+2xtanθ-1,其中θ∈($-\frac{π}{2}$,$\frac{π}{2}$)
(1)當θ=-$\frac{π}{4}$,x∈[-1,$\sqrt{3}$]時,求函數(shù)f(x)的最大值和最小值
(2)求θ的取值范圍,使y=f(x)在區(qū)間[-$\sqrt{3}$,1]上是單調函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.在下列命題中,真命題是(1)(2)(寫出所有真命題的序號)
(1)互為反函數(shù)的兩個函數(shù)的單調性相同;
(2)y=f(x)圖象與y=-f(-x)的圖象關于原點對稱;
(3)奇函數(shù)f(x)必有反函數(shù)f-1(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列函數(shù)中以π為周期,在(0,$\frac{π}{2}}$)上單調遞減的是( 。
A.y=(cot1)tanxB.y=|sinx|C.y=-cos2xD.y=-tan|x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知定義在R上的函數(shù)f(x)=ax3+bx+1(a、b∈R且a≠0),若f(2)=3,則f(-2)=-1.

查看答案和解析>>

同步練習冊答案