14.在莖葉圖中,樣本的中位數(shù)為72,眾數(shù)為72.

分析 根據(jù)莖葉圖,利用中位數(shù)與眾數(shù)的定義,即可得出結(jié)論.

解答 解:根據(jù)莖葉圖中的數(shù)據(jù),將數(shù)據(jù)從小到大排列,在中間的第9個數(shù)是72,
所以中位數(shù)為72;
又?jǐn)?shù)據(jù)中出現(xiàn)次數(shù)最多的是72,所以眾數(shù)是72.
故答案為:72,72.

點(diǎn)評 本題主要考查利用莖葉圖中的數(shù)據(jù)求中位數(shù)與眾數(shù)的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.橢圓$\frac{x^2}{4}+{y^2}$=1上的點(diǎn)P到上頂點(diǎn)距離的最大值為(  )
A.2B.$\sqrt{5}$C.$\frac{{4\sqrt{3}}}{3}$D.不存在最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.下列說法:
①扇形的周長為8cm,面積為4cm2,則扇形的圓心角弧度數(shù)為2rad;
②函數(shù)f(x)=2cosx(sinx+cosx)的最大值為$\sqrt{2}$;
③若α是第三象限角,則$y=\frac{{|sin\frac{α}{2}|}}{{sin\frac{α}{2}}}+\frac{{|cos\frac{α}{2}|}}{{cos\frac{α}{2}}}$的值為0或-2;
④若sinα=sinβ,則α與β的終邊相同;
其中正確的是①.(寫出所有正確答案)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.△ABC的三邊a,b,c成等差數(shù)列,則角B的范圍是( 。
A.$({0,\frac{π}{3}}]$B.$[{\frac{π}{6},\frac{π}{2}})$C.$[{\frac{π}{4},\frac{π}{2}})$D.$({0,\frac{π}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)f(x)是定義在R上以3為周期的奇函數(shù),若f(1)>1,f(2018)=a2-5,則實(shí)數(shù)a的取值范圍是(-2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,離心率e=$\frac{{\sqrt{2}}}{2}$,P為橢圓E上的任意一點(diǎn)(不含長軸端點(diǎn)),且△PF1F2面積的最大值為2.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)直線l:x=my+1(m∈R)交橢圓E于A、B兩點(diǎn),試探究:點(diǎn)M(3,0)與以線段AB為直徑的圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)$f(x)=\frac{{-{{tan}^2}x-tanx}}{1+tanx}$的奇偶性為( 。
A.既奇又偶函數(shù)B.偶函數(shù)C.非奇非偶函數(shù)D.奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.曲線y=x3-2x在點(diǎn)(1,-1)處的切線傾斜角為(  )
A.30°B.45°C.60°D.135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)a、b、c是正數(shù),若$\frac{b+c}{a}$,$\frac{c+a}$,$\frac{a+b}{c}$成等差數(shù)列,判斷$\frac{1}{a}$,$\frac{1}$,$\frac{1}{c}$是不是也成等差數(shù)列?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案