18.經(jīng)過點(diǎn)(2,1),且漸近線與圓x2+(y-2)2=1相切的雙曲線的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{x}^{2}}{\frac{11}{3}}$-$\frac{{y}^{2}}{11}$=1B.$\frac{{x}^{2}}{2}$-y2=1C.$\frac{{y}^{2}}{\frac{11}{3}}$-$\frac{{x}^{2}}{11}$=1D.$\frac{{y}^{2}}{11}$-$\frac{{x}^{2}}{\frac{11}{3}}$=1

分析 設(shè)雙曲線的方程為mx2-ny2=1(mn>0),將(2,1)代入雙曲線的方程,求得漸近線方程,再由直線和圓相切的條件:d=r,解方程可得m,n,進(jìn)而得到雙曲線的方程.

解答 解:設(shè)雙曲線的方程為mx2-ny2=1(mn>0),
將(2,1)代入方程可得,4m-n=1,①
由雙曲線的漸近線方程y=±$\sqrt{\frac{m}{n}}$x,
圓x2+(y-2)2=1的圓心為(0,2),半徑為1,
漸近線與圓x2+(y-2)2=1相切,可得:
$\frac{2}{\sqrt{1+\frac{m}{n}}}$=1,即為$\frac{m}{n}$=3,②
由①②可得m=$\frac{3}{11}$,n=$\frac{1}{11}$,
即有雙曲線的方程為$\frac{{x}^{2}}{\frac{11}{3}}$-$\frac{{y}^{2}}{11}$=1.
故選:A.

點(diǎn)評(píng) 本題考查雙曲線的方程的求法,注意運(yùn)用待定系數(shù)法,以及直線和圓相切的條件:d=r,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.將離心率為e1的雙曲線C1的實(shí)半軸長(zhǎng)a和虛半軸長(zhǎng)b同時(shí)增加m (m>0)個(gè)單位長(zhǎng)度,得到離心率為e2的雙曲線C2,則當(dāng)a<b時(shí)有( 。
A.e1>e2B.e1<e2C.e1≤e2D.e1≥e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.直線l過點(diǎn)$(\sqrt{2},0)$且與雙曲線x2-y2=2僅有一個(gè)公共點(diǎn),這樣的直線有(  )
A.4條B.3條C.2條D.1條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.以y=±$\frac{1}{2}$x為漸近線,且經(jīng)過點(diǎn)P(2,2)的雙曲線的方程為$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{12}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某程序的流程圖如圖所示,若使輸出的結(jié)果不大于37,則輸入的整數(shù)的最大值為5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦點(diǎn)分別為F1,F(xiàn)2.若左焦點(diǎn)F1關(guān)于其中一條漸近線的對(duì)稱點(diǎn)位于雙曲線上,則該雙曲線的離心率e的值為( 。
A.$\sqrt{3}$B.3C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在正方形ABCD-A1B1C1D1中,E是AA1的中點(diǎn),則異面直線BE與B1D1所成角的余弦值等于$\frac{\sqrt{10}}{5}$,若正方體邊長(zhǎng)為1,則四面體B-EB1D1的體積為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)y=f(x)=|x-1|-mx,若關(guān)于x的不等式f(x)<0解集中的整數(shù)恰為3個(gè),則實(shí)數(shù)m的取值范圍為   (  )
A.$\frac{2}{3}<m≤\frac{3}{4}$B.$\frac{3}{4}<m≤\frac{4}{5}$C.$\frac{2}{3}<m<\frac{3}{4}$D.$\frac{3}{4}<m<\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.不等式(3+x)(2-x)<0的解集為{x|x>2或x<-3}.

查看答案和解析>>

同步練習(xí)冊(cè)答案