19.在(x+y)(x+1)4的展開式中x的奇數(shù)次冪項的系數(shù)之和為32,則y的值是3.

分析 把(x+1)4 按照二項式定理展開,可得(x+y)(x+1)4的展開式中x的奇數(shù)次冪項的系數(shù)之和為1+6+1+4y+4y=32,由此求得y的值.

解答 解:∵(x+y)(x+1)4 =(x+y)(x4+4x3+6x2+4x+1)
=x5+4x4+6x3+4x2+x+y•x4+4yx3+6yx2+4yx+y,
∴展開式中x的奇數(shù)次冪項的系數(shù)之和為1+6+1+4y+4y=32,∴y=3,
故答案為:3.

點評 本題主要考查二項式定理的應用,二項式展開式的通項公式,二項式系數(shù)的性質(zhì),屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.容器C的內(nèi)、外壁分別為棱長為2a和2a+2的正方體,容器S的內(nèi)、外壁分別為半徑為r和r+1的球形,若兩個容器的容積相同,則關于兩個容器的體積VC和VS,下列說法正確的是( 。
A.存在滿足條件的a,r,使得VC<VS
B.對任意滿足條件的a,r,使得VC=VS
C.對任意滿足條件的a,r,使得VC>VS
D.存在唯一一組條件的a,r,使得VC=VS

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.10名同學分兩組,一組7人,一組3人,不同的分法有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下面隨機變量X的分布列不屬于二項分布的是(  )
A.據(jù)中央電視臺新聞聯(lián)播報道,一周內(nèi)在某網(wǎng)站下載一次數(shù)據(jù),電腦被感染某種病毒的概率是0.65,設在這一周內(nèi),某電腦從該網(wǎng)站下載數(shù)據(jù)n次中被感染這種病毒的次數(shù)為X
B.某射手射擊擊中目標的概率為p,設每次射擊是相互獨立的,從開始射擊到擊中目標所需要的射擊次數(shù)為X
C.某射手射擊擊中目標的概率為p,設每次射擊是相互獨立的,射擊n次命中目標的次數(shù)為X
D.位于某汽車站附近有一個加油站,汽車每次出站后到這個加油站加油的概率為0.6,國慶節(jié)這一天有50輛汽車開出該站,假設一天里汽車去該加油站加油是相互獨立的,去該加油站加油的汽車數(shù)為X

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某工廠要制造A種電子裝置45臺、B種電子裝置55臺,需用薄鋼板給每臺裝置配一個外殼.已知薄鋼板的面積有兩種規(guī)格:甲種薄鋼板每張面積2m2,可做A、B的外殼分別為3個和5個,乙種薄鋼板每張面積3m2,可做A、B的外殼均為6個.設工廠用x張甲種薄鋼板,y張乙種薄鋼板.
(Ⅰ)用x,y列出滿足條件的數(shù)學關系式,并在坐標系中用陰影表示相應的平面區(qū)域;
(Ⅱ)甲,乙兩種薄鋼板各用多少張才能使用料總面積最小,最小面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在△ABC中,AB=3,AC=4,∠BAC=60°,若P是△ABC所在平面內(nèi)一點,且AP=2,則$\overrightarrow{PB}$•$\overrightarrow{PC}$的最大值為( 。
A.10B.12C.10+2$\sqrt{37}$D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=Asin(ωx+φ)的圖象如圖所示,則∫${\;}_{\frac{π}{3}}^{π}$f(x)dx的值為( 。
A.2-$\sqrt{3}$B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.運行如圖所示的程序框圖,若輸出的結(jié)果為$\frac{1}{63}$,則判斷框中應填入的條件是( 。
A.i>4?B.i<4?C.i>5?D.i<5?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.某教師一天上3個班級的課,每班一節(jié),如果一天共8節(jié)課,上午5節(jié)、下午3節(jié),并且教師不能連上3節(jié)課(第5和第6節(jié)不算連上),那么這位教師一天的課的所有排法有( 。
A.474種B.312種C.462種D.300種

查看答案和解析>>

同步練習冊答案