14.某工廠要制造A種電子裝置45臺(tái)、B種電子裝置55臺(tái),需用薄鋼板給每臺(tái)裝置配一個(gè)外殼.已知薄鋼板的面積有兩種規(guī)格:甲種薄鋼板每張面積2m2,可做A、B的外殼分別為3個(gè)和5個(gè),乙種薄鋼板每張面積3m2,可做A、B的外殼均為6個(gè).設(shè)工廠用x張甲種薄鋼板,y張乙種薄鋼板.
(Ⅰ)用x,y列出滿(mǎn)足條件的數(shù)學(xué)關(guān)系式,并在坐標(biāo)系中用陰影表示相應(yīng)的平面區(qū)域;
(Ⅱ)甲,乙兩種薄鋼板各用多少?gòu)埐拍苁褂昧峡偯娣e最小,最小面積是多少?

分析 (I)根據(jù)面積列出約束條件,作出平面區(qū)域;
(II)目標(biāo)函數(shù)為z=2x+3y,即y=-$\frac{2}{3}x$+$\frac{z}{3}$,根據(jù)平面區(qū)域找到最優(yōu)解得位置,解方程組得出最優(yōu)解.

解答 解:(Ⅰ)設(shè)工廠用x張甲種薄鋼板,y張乙種薄鋼板,
則x,y滿(mǎn)足的數(shù)學(xué)關(guān)系式為$\left\{\begin{array}{l}{3x+6y≥45}\\{5x+6y≥55}\\{x≥0}\\{y≥0}\end{array}\right.$,
作出二元一次不等式組所表示的平面區(qū)域如圖所示:

(Ⅱ)設(shè)總面積為zm2,則目標(biāo)函數(shù)為:z=2x+3y.
由z=2x+3y得:y=-$\frac{2}{3}x$+$\frac{z}{3}$,
∴由圖可知,當(dāng)直線(xiàn)y=-$\frac{2}{3}x$+$\frac{z}{3}$過(guò)點(diǎn)A時(shí),直線(xiàn)的截距最小,即z最。
解方程組$\left\{\begin{array}{l}{3x+6y=45}\\{5x+6y=55}\end{array}\right.$ 得A(5,5),
∴zmin=2×5+3×5=25.  
答:甲,乙兩種薄鋼板各用5張才能使用料總面積最小,最小面積是25m2

點(diǎn)評(píng) 本題考查了簡(jiǎn)單線(xiàn)性規(guī)劃的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.給出一個(gè)正五棱柱,用3種顏色給其10個(gè)頂點(diǎn)染色,要求各側(cè)棱的兩個(gè)端點(diǎn)不同色,共有7776種染色方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在五個(gè)數(shù)字5,6,7,8,9,中,若隨機(jī)取出三個(gè)數(shù)字,剩下兩個(gè)數(shù)字都是奇數(shù)的概率是(  )
A.$\frac{3}{5}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.今有一小船位于寬d=60m的河邊P處,從這里起,在下游l=80m處河流有一瀑布,若河水流速方向由上游指向下游(與河岸平行),水速大小為5m/s,如圖,為了使小船能安全渡河,船的劃速不能小于多少?當(dāng)劃速最小時(shí),劃速方向如何?(sin37°=$\frac{3}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)A($\sqrt{2}$,0),且離心率e=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)如圖,過(guò)橢圓C2:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1上任意一點(diǎn)P作橢圓C1的兩條切線(xiàn)PM和PN,切點(diǎn)分別為M、N.當(dāng)點(diǎn)P在橢圓C2上運(yùn)動(dòng)時(shí),是否存在圓心在原點(diǎn)的定圓恒與直線(xiàn)MN相切?若存在,求出該定圓的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在(x+y)(x+1)4的展開(kāi)式中x的奇數(shù)次冪項(xiàng)的系數(shù)之和為32,則y的值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知點(diǎn)A(0,3),若圓C:(x-a)2+(y-2a+4)2=1上存在點(diǎn)M,使|MA|=2|MO|,則圓心C的橫坐標(biāo)a的取值范圍為[0,$\frac{12}{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.同時(shí)拋擲3枚硬幣,三枚出現(xiàn)相同一面的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某中學(xué)進(jìn)行教學(xué)改革試點(diǎn),推行“高效課堂”的教學(xué)方法,為了提高教學(xué)效果,某數(shù)學(xué)教師在甲乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn),甲班采用傳統(tǒng)教學(xué)方式,乙班采用“高效課堂”教學(xué)方式.為了了解教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出的莖葉圖如圖:記成績(jī)不低于70分者為“成績(jī)優(yōu)良”
(1)分別計(jì)算甲乙兩班20個(gè)樣本中,數(shù)學(xué)分?jǐn)?shù)前十的平均分,并大致判斷哪種教學(xué)方式的教學(xué)效果更佳;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面2×2列聯(lián)表,并判斷“成績(jī)優(yōu)良”與教學(xué)方式是否有關(guān).
 甲班乙班總計(jì)
成績(jī)優(yōu)良   
成績(jī)不優(yōu)良   
總計(jì)   
附:Χ2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}•{n}_{2+}•{n}_{+1}•{n}_{+2}}$
獨(dú)立性檢驗(yàn)臨界值表:
P(Χ2≤k)0.100.050.0250.010
k2.7063.8415.0246.635

查看答案和解析>>

同步練習(xí)冊(cè)答案