20.點P( 1,4,-3)與點Q(3,-2,5)的中點坐標是( 。
A.( 4,2,2)B.(2,-1,2)C.(2,1,1)D.4,-1,2)

分析 直接利用空間中點坐標公式求解即可.

解答 解:點P( 1,4,-3)與點Q(3,-2,5)的中點坐標是(2,1,1).
故選:C.

點評 本題考查空間中點坐標公式的應用,是基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),點B為圓O:x2+y2=a2與y軸的交點,過點B的直線l(斜率為正)與橢圓相切于點D,并交x軸于點C,O為坐標原點,如圖.
(Ⅰ)若切點坐標為D(-1,$\frac{3}{2}$),求橢圓E的方程;
(Ⅱ)若直線l與圓O的另一交點為A,且滿足$\overrightarrow{BD}$=2$\overrightarrow{DA}$,求橢圓E的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=sin(2x+φ),0<φ≤π圖象的一條對稱軸是直線$x=\frac{π}{8}$,則φ=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知各項均為正數(shù)的數(shù)列{an}的前n項和Sn滿足S1>1,且$6{S_n}=a_n^2+3{a_n}+2$(n∈N*).
(1)求{an}的通項公式;
(2)設數(shù)列{bn}滿足${b_n}=\left\{{\begin{array}{l}{{a_n},n為偶數(shù)}\\{{2^{a_n}},n為奇數(shù)}\end{array}}\right.$,Tn為數(shù)列{bn}的前n項和,求Tn
(3)設${C_n}=\frac{{{b_{n+1}}}}{b_n},(n為正整數(shù))$,問是否存在正整數(shù)N,使得當任意正整數(shù)n>N時恒有Cn>2015成立?若存在,請求出正整數(shù)N的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.點P( 1,4,-3)與點Q(3,-2,5)的中點坐標是( 。
A.( 4,2,2)B.(2,-1,2)C.(2,1,1)D.( 4,-1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知直線a的傾斜角為45°,則a的斜率是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知直線y=2x+b過點(1,2),則b=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列有關(guān)命題的說法錯誤的是(  )
A.命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠-1,則x2-3x+2≠0”
B.若p∧q為假命題,則p、q均為假命題
C.“x=1”是“x2-3x+2=0的充分不必要條件”
D.對于命題p:?x0∈R使得x02+x0+1<0,則¬p:?x∈R,均有x2+x+1≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若函數(shù)f(x)=sin(ωx+φ)(其中ω>0)在(0,$\frac{π}{3}$)上單調(diào)遞增,且f($\frac{π}{6}$)+f($\frac{π}{3}$)=0,f(0)=-1,則ω=2.

查看答案和解析>>

同步練習冊答案