20.若M={1,2},N={2,3},則M∩N=( 。
A.{2}B.{1,2,3}C.{1,3}D.{1}

分析 利用交集定義直接求解.

解答 解:∵M(jìn)={1,2},N={2,3},
∴M∩N={2}.
故選:A.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=x3,則不等式f(2x)+f(x-1)<0的解集是(-∞,$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)f(x)=$\left\{\begin{array}{l}{|lnx|,0<x≤1}\\{|lnx-{x}^{2}+2|,x>1}\end{array}\right.$,則函數(shù)g(x)=f(x)-1的零點(diǎn)個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)f(x)=-$\frac{\sqrt{3}}{2}$sinx$-\frac{1}{2}$cosx+1
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)若x∈[0,$\frac{π}{2}$],且f(x)=$\frac{1}{3}$,求cosx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知正四棱錐的底面邊長(zhǎng)是2,側(cè)面積為12,則該正四棱錐的體積為$\frac{8\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知在($\frac{x}{2}$$-\frac{1}{\root{5}{x}}$)n的展開(kāi)式中,第6項(xiàng)為常數(shù)項(xiàng),則n=( 。
A.9B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=x2+bx+c的圖象過(guò)點(diǎn)(-1,3),且關(guān)于直線x=1對(duì)稱
(Ⅰ)求f(x)的解析式;
(Ⅱ)若m<3,求函數(shù)f(x)在區(qū)間[m,3]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,直角梯形ABCD與等邊△ABE所在的平面互相垂直,AB∥CD,AB⊥BC,AB=2CD=AD=2,F(xiàn)為線段EA上的點(diǎn),且EA=3EF.
(I)求證:EC∥平面FBD
(Ⅱ)求多面體EFBCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=2$\sqrt{3}$|$\overrightarrow{a}$|,且($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{a}$=0,則$\frac{|\overrightarrow{a}|}{|\overrightarrow|}$為(  )
A.0B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案