14.曲線$\left\{\begin{array}{l}{x=|sinθ|}\\{y=cosθ}\end{array}\right.$(θ為參數(shù))的方程等價于( 。
A.x=$\sqrt{1-{y}^{2}}$B.y=$\sqrt{1-{x}^{2}}$C.y=±$\sqrt{1-{x}^{2}}$D.x2+y2=1

分析 將參數(shù)方程化為普通非常,根據(jù)x的范圍繼續(xù)化簡.

解答 解:曲線的普通方程為x2+y2=1,
∵x=|sinx|≥0,
∴x=$\sqrt{1-{y}^{2}}$.
故選A.

點評 本題考查了參數(shù)方程與普通方程的轉(zhuǎn)化,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.若函數(shù)f(x)=sin$\frac{x}{2}$+acos$\frac{x}{2}$的圖象關(guān)于點($\frac{3π}{2}$,0)對稱,則函數(shù)f(x)的最大值等于( 。
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一個焦點為F($\sqrt{3}$,0),實軸長為2,經(jīng)過點M(2,1)作直線l交雙曲線C于A,B兩點,且M為AB中點.
(1)求雙曲線C的方程;
(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.某幾何體的三視圖如圖所示,它的體積為( 。
A.57πB.58πC.59πD.60π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.作出參數(shù)方程$\left\{\begin{array}{l}{x=cosθ+1}\\{y{=sin}^{2}θ-1}\end{array}\right.$ (θ為參數(shù),0≤θ≤2π)所表示的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.先后擲骰子兩次,落在水平桌面后,記正面朝上的點數(shù)分別為x,y,設事件A為“x+y為偶數(shù)”,事件B為“x≠y”,則概率P(B|A)=( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設函數(shù)f(x)=1-$\sqrt{3}$cos2x-2sin2($\frac{π}{4}$-x),x∈R.求:
(Ⅰ)f(x)的最小正周期;
(Ⅱ)f(x)在閉區(qū)間[-$\frac{π}{3}$,$\frac{π}{2}$]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.若圓C的方程為(x-3)2+(y-1)2=9與直線斜率為1的直線m交于A,B兩點,且以AB為直徑的圓過原點,
(1)求直線m的方程;
(2)若過點T(1,3)的直線l與圓C交于P,Q兩點,線段PQ的中點為M,求M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.運行如圖所示的程序框圖,輸出的S=-1.

查看答案和解析>>

同步練習冊答案
<dd id="uxtll"><meter id="uxtll"></meter></dd>
  • <var id="uxtll"></var>
  • <tfoot id="uxtll"><wbr id="uxtll"><strike id="uxtll"></strike></wbr></tfoot>
  •