3.已知f(x)=$\sqrt{3}$sinx•cosx+cos2x.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在銳角△ABC的三個(gè)角A,B,C所對(duì)的邊分別為a,b,c,且f(C)=1,求$\frac{{{a^2}+{b^2}+{c^2}}}{ab}$的取值范圍.

分析 (I)由三角函數(shù)公式化簡(jiǎn)可得f(x)=$\frac{1}{2}$+sin(2x+$\frac{π}{6}$),解$2kπ-\frac{π}{2}≤2x+\frac{π}{6}≤2kπ+\frac{π}{2}$可得單調(diào)遞增區(qū)間;
( II)可得$C=\frac{π}{3}$,由余弦定理得表達(dá)式,由銳角三角形可得$\frac{π}{6}<A<\frac{π}{2,}$再由正弦定理得$\frac{a}$的范圍,由函數(shù)的值域可得.

解答 解:( I)由三角函數(shù)公式化簡(jiǎn)可得:
f(x)=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$(1+cos2x)=$\frac{1}{2}$+sin(2x+$\frac{π}{6}$),
由$2kπ-\frac{π}{2}≤2x+\frac{π}{6}≤2kπ+\frac{π}{2}$可得$kπ-\frac{π}{3}≤x≤kπ+\frac{π}{6}$
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為$[{kπ-\frac{π}{3},kπ+\frac{π}{6}}],k∈Z$;
( II)∵f(C)=$\frac{1}{2}$+sin(2x+$\frac{π}{6}$)=1,∴sin(2x+$\frac{π}{6}$)=$\frac{1}{2}$,
∴$2C+\frac{π}{6}=2kπ+\frac{π}{6}$或$2C+\frac{π}{6}=2kπ+\frac{5π}{6}$,k∈Z,
∴結(jié)合三角形內(nèi)角的范圍可$C=\frac{π}{3}$,
由余弦定理得c2=a2+b2-ab,
∴$\frac{{{a^2}+{b^2}+{c^2}}}{ab}=\frac{{2({a^2}+{b^2})}}{ab}-1=2(\frac{a}+\frac{a})-1$,
∵△ABC為銳角三角形,∴$\left\{\begin{array}{l}{0<A<\frac{π}{2}}\\{0<\frac{2π}{3}-A<\frac{π}{2}}\end{array}\right.$,
∴$\frac{π}{6}<A<\frac{π}{2,}$由正弦定理得$\frac{a}=\frac{sinB}{sinA}=\frac{{sin(\frac{2}{3}π-A)}}{sinA}=\frac{{\sqrt{3}}}{2tanA}+\frac{1}{2}∈({\frac{1}{2},2})$
∴$\frac{{{a^2}+{b^2}+{c^2}}}{ab}∈[{3,4})$

點(diǎn)評(píng) 本題考查正余弦定理解三角形,涉及函數(shù)的值域和整體思想,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x均有f(x)=kf(x+2),其中常數(shù)k為負(fù)數(shù),且f(x)在區(qū)間[0,2]上有表達(dá)式f(x)=x(x-2).
(1)求f(-1),f(2.5)的值(用k表示);
(2)寫(xiě)出f(x)在[-3,2]上的表達(dá)式,并討論f(x)在[-3,2]上的單調(diào)性(不要證明);
(3)求出f(x)在[-3,2]上的最小值和最大值,并求出相應(yīng)的自變量的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知tanα=-1,且cosα=$\frac{\sqrt{2}}{2}$,則角α為(  )
A.-$\frac{π}{4}$+kπ,(k∈Z)B.-$\frac{π}{4}$+2kπ,(k∈Z)C.$\frac{7π}{4}$+2kπ,(k∈Z)D.$\frac{3π}{4}$+2kπ,(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.把一個(gè)圓分成3個(gè)扇形,現(xiàn)在用5種不同的給3個(gè)扇形涂色,要求相鄰扇形的顏色互不相同,問(wèn):
(1)有多少種不同的涂法?
(2)若分割成4個(gè)扇形呢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.復(fù)數(shù)z=($\frac{i}{1-i}$)2,則復(fù)數(shù)2+z在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.排球比賽的規(guī)則是5局3勝制(無(wú)平局),甲在每局比賽獲勝的概率都相等為$\frac{2}{3}$,前2局中乙隊(duì)以2:0領(lǐng)先,則最后乙隊(duì)獲勝的概率是( 。
A.$\frac{4}{9}$B.$\frac{8}{27}$C.$\frac{19}{27}$D.$\frac{40}{81}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.要得到函數(shù)y=sin(4x-$\frac{π}{4}$)的圖象,只需將函數(shù)y=sin4x的圖象( 。
A.向左平移$\frac{π}{16}$個(gè)單位B.向右平移$\frac{π}{16}$個(gè)單位
C.向左平移$\frac{π}{4}$個(gè)單位D.向右平移$\frac{π}{4}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在數(shù)列{an}中,a1=2.a(chǎn)2=1,$\frac{2}{{a}_{n}}$=$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n-1}}$(n≥2),則數(shù)列{an}的通項(xiàng)公式為an=$\frac{2}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)y=-2cosx-3,當(dāng)x的取值集合為{x|x=2kπ+π,k∈Z}時(shí),y取得最大值;當(dāng)x的取值集合為{x|x=2kπ,k∈Z}時(shí),y取得最小值-5.

查看答案和解析>>

同步練習(xí)冊(cè)答案