2.一部記錄影片在4個單位輪映,每一單位放映1場,有多少種輪換次序?

分析 本題可以看做把4個單位看成四個位置,使得四個位置進(jìn)行全排列即可得出正確選項(xiàng)

解答 解:本題可以看做把4個單位看成四個位置,在四個位置進(jìn)行全排列,
故有A44=24種結(jié)果

點(diǎn)評 本題是排列和組合數(shù)的運(yùn)算,根據(jù)排列和組合的公式,寫出算式,通過加減乘運(yùn)算,得到結(jié)果,這類問題有一大部分是考查排列和組合的性質(zhì)的,本題是一個簡單的運(yùn)算

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知向量$\overrightarrow{a}$=($\sqrt{3}$,-1),$\overrightarrow$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)
(1)求證:$\overrightarrow{a}$⊥$\overrightarrow$;
(2)是否存在不為0的實(shí)數(shù)k和t,使$\overrightarrow{x}$=$\overrightarrow{a}$+(t2-3)$\overrightarrow$,$\overrightarrow{y}$=-k$\overrightarrow{a}$+t$\overrightarrow$,且$\overrightarrow{x}$⊥$\overrightarrow{y}$?如果存在,試確定k與t的關(guān)系,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,△PAB所在的平面α和四邊形ABCD所在的平面β垂直,且AD⊥α,BC⊥α,AD=4,BC=8,AB=6,∠APD=∠CPB,則點(diǎn)P在平面α內(nèi)的軌跡是( 。
A.圓的一部分B.一條直線C.一條直線D.兩條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知f(x)=x3+ax-2b,如果f(x)的圖象在切點(diǎn)P(1,-2)處的切線與圓(x-2)2+(y+4)2=5相切,那么3a+2b=-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.國際羽毛球比賽中裁判最多的時候有11名:1名裁判長、1名主裁判、1名發(fā)球裁判、4名邊裁、4名底裁.在某國際羽毛球比賽中,組委會將來自中國、丹麥、印度尼西亞的6名裁判(其中每個國家各2名)安排到某個比賽場館的一號、二號和三號場地?fù)?dān)任主裁判和發(fā)球裁判這2種裁判,要求每個場地的這2種裁判來自不同的國家,則不同的安排方案共有( 。
A.48種B.96種C.384種D.480種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè) a,b是互不垂直的兩條異面直線,則下列命題成立的是( 。
A.存在唯一直線l,使得l丄 a,且l丄bB.存在唯一直線l,使得l∥a,且l丄b
C.存在唯一平面α,使得 a?α,且 b∥αD.存在唯一平面α,使得a?α,且b丄α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.不等式|x-2|+|x+1|≥4的解集為{x|x≥$\frac{5}{2}$,或x≤$-\frac{3}{2}$}..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,|$\overrightarrow{a}$|=|$\overrightarrow$|=$\overrightarrow{a}$•$\overrightarrow$=2,($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow$-$\overrightarrow{2c}$)=0則|$\overrightarrow$-$\overrightarrow{c}$|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2$\sqrt{3}$sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+2cos2(x-$\frac{π}{4}$)-1,x∈R.
(1)若函數(shù)y=f(x)的圖象關(guān)于直線x=a(a>0)對稱,求a的最小值;
(2)若函數(shù)g(x)=f(x)-log2m在[0,$\frac{5π}{12}$]上有零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案