分析 運(yùn)用乘1法,可得x+y=(x+y)•1=(x+y)($\frac{a}{x}$+$\frac{y}$)=a+b+$\frac{ay}{x}$+$\frac{bx}{y}$,運(yùn)用均值不等式,即可得證.
解答 證明:由a,b為正常數(shù),x,y>0,且$\frac{a}{x}$+$\frac{y}$=1,
可得x+y=(x+y)•1=(x+y)($\frac{a}{x}$+$\frac{y}$)
=a+b+$\frac{ay}{x}$+$\frac{bx}{y}$≥a+b+2$\sqrt{\frac{ay}{x}•\frac{bx}{y}}$
=a+b+2$\sqrt{ab}$=($\sqrt{a}$+$\sqrt$)2,
當(dāng)且僅當(dāng)$\frac{ay}{x}$=$\frac{bx}{y}$,即$\sqrt$x=$\sqrt{a}$y時(shí),取得等號(hào).
則x+y≥($\sqrt{a}$+$\sqrt$)2.
點(diǎn)評(píng) 本題考查不等式的證明,注意運(yùn)用乘1法和均值不等式,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3$\overrightarrow b$-$\overrightarrow c$ | B. | 3$\overrightarrow c$-2$\overrightarrow b$ | C. | 2$\overrightarrow b$+3$\overrightarrow c$ | D. | -2$\overrightarrow b$-3$\overrightarrow c$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{33}{65}$ | B. | $-\frac{63}{65}$ | C. | $\frac{33}{65}$ | D. | $\frac{16}{65}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | (1,+∞) | C. | (0,1) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $±\frac{{\sqrt{11}}}{33}$ | B. | $±\sqrt{3}$ | C. | $±\frac{{\sqrt{3}}}{3}$ | D. | $±3\sqrt{11}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com