3.已知α,β都是銳角,cosα=$\frac{3}{5}$,cos(α+β)=-$\frac{5}{13}$,則oosβ值為(  )
A.$-\frac{33}{65}$B.$-\frac{63}{65}$C.$\frac{33}{65}$D.$\frac{16}{65}$

分析 根據(jù)同角三角函數(shù)基本關(guān)系的應(yīng)用分別求得sinα和sin(α+β)的值,進(jìn)而根據(jù)余弦的兩角和公式求得答案.

解答 解:∵α,β都是銳角,cosα=$\frac{3}{5}$,cos(α+β)=-$\frac{5}{13}$,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{4}{5}$,sin(α+β)=$\sqrt{1-co{s}^{2}(α+β)}$=$\frac{12}{13}$,
∴cosβ=cos(α+β-α)=cos(α+β)cosα+sin(α+β)sinα=-$\frac{5}{13}$×$\frac{3}{5}$+$\frac{4}{5}$×$\frac{12}{13}$=$\frac{33}{65}$.
故選:C.

點(diǎn)評(píng) 本題主要考查了余弦函數(shù)的兩角和公式的應(yīng)用.注重了對學(xué)生基礎(chǔ)知識(shí)的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知命題p:x2-2x-3<0;命題q:$\frac{1}{3-x}$>1,則p是q的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知直線l:ax-y-a+1=0與圓C:x2+y2=4,則l被圓C所截得的弦長的最小值為2$\sqrt{2}$,此時(shí)a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}的前n項(xiàng)和Sn=n2-n,數(shù)列{bn}的前n項(xiàng)和Tn=4-bn
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn=$\frac{1}{2}$an•bn,求數(shù)列{cn}的前n項(xiàng)和Rn的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求滿足下列條件的圓的方程:
(1)過三點(diǎn)A(5,1),B(7,-3),C(2,8)的圓;
(2)過點(diǎn)A(1,-1)、B(-1,1)且圓心在直線x+y-2=0上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,若b=3,c=1,cosA=$\frac{1}{3}$,則a=(  )
A.$2\sqrt{3}$B.$2\sqrt{2}$C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知a,b為正常數(shù),x,y>0,且$\frac{a}{x}$+$\frac{y}$=1,求證:x+y≥($\sqrt{a}$+$\sqrt$)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若a>0,b>0,求證:$\frac{a+b}{2}$≤$\sqrt{\frac{{a}^{2}{+b}^{2}}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,直三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,E,F(xiàn)分別是BC,CC1的中點(diǎn).
(1)證明:平面AEF⊥平面B1BCC1;
(2)設(shè)AB的中點(diǎn)為D,且CD=A1D,求三棱錐A1-AEF的體積.

查看答案和解析>>

同步練習(xí)冊答案