分析 (1)分a>0和a≤0兩種情況討論,可得原不等式的解集;
(2)f(x+1)+f(2x)≤4可化為:$\left\{\begin{array}{l}x≤-1\\-3x-1≤4\end{array}\right.$,或$\left\{\begin{array}{l}-1<x<0\\ 1-x≤4\end{array}\right.$,或$\left\{\begin{array}{l}x≥0\\ 3x+1≤4\end{array}\right.$,解得答案.
解答 解:(1)若a>0,不等式f(x-1)<a可化為:|x-1|<a,解得1-a<x<1+a;
故原不等式的解集為:(1-a,1+a);
若a≤0,則不等式f(x-1)<a的解集為∅…(4分)
(2)由f(x+1)+f(2x)≤4得:
|x+1|+|2x|≤4
∴原問題等價于|x+1|+|2x|≤4,
∴$\left\{\begin{array}{l}x≤-1\\-3x-1≤4\end{array}\right.$,或$\left\{\begin{array}{l}-1<x<0\\ 1-x≤4\end{array}\right.$,或$\left\{\begin{array}{l}x≥0\\ 3x+1≤4\end{array}\right.$
解得:-$\frac{5}{3}$≤x≤1.
故原不等式的解集為:[-$\frac{5}{3}$,1]…(10分)
點評 本題考查的知識點是分段函數(shù)的應(yīng)用,分類討論思想,難度中檔.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{529}{625}$ | B. | $\frac{96}{625}$ | C. | $\frac{23}{25}$ | D. | $\frac{2}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<a<1 | B. | 0≤a≤1 | C. | 0<a≤1 | D. | 0≤a<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | $\frac{5}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com