若方程x2-11x+m-2=0的兩實(shí)數(shù)根都大于1,則m取值范圍為
 
考點(diǎn):一元二次方程的根的分布與系數(shù)的關(guān)系
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:令f(x)=x2-11x+m-2,由題意可得
△=121-4(m-2)≥0
f(1)=m-12>0
,由此求得m的范圍.
解答: 解:令f(x)=x2-11x+m-2,由題意可得
△=121-4(m-2)≥0
f(1)=m-12>0
,
由此求得 12<m≤
129
4
,
故答案為:(12,
129
4
].
點(diǎn)評(píng):題主要考查一元二次方程根的分布與系數(shù)的關(guān)系,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z滿足方程z2+2=0,則z=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1+2i
3-4i
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平行四邊形ABCD中,A(-1,3),B(3,-2),C(6,-1),則點(diǎn)D的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列說(shuō)法:
①存在實(shí)數(shù)α,使sinα+cosα=
3
2

②函數(shù)y=sin(
3
2
π+x)是奇函數(shù);
③x=
π
8
是函數(shù)y=sin(2x+
5
4
π)的一條對(duì)稱軸方程;
④若tanα=-
1
3
,則
1
cos2α
=
10
9

其中正確說(shuō)法的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題:
①實(shí)數(shù)都在實(shí)軸上;
②z∈C,則|z|=
z
.
z
;
③虛數(shù)都在虛軸上;
④z∈C,|z|=1,則z=±1;
⑤z∈C,則z為純虛數(shù)的充要條件是
.
z
=-z;
⑥z∈C,則|z|2=z2;
⑦z1,z2∈C,若z12+z22=0,則z1=z2=0
其中真命題的編號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}中,a1=1,an+1=
an
an+1
(n∈N*),若am=
1
5
,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若圓錐的全面積是底面積的3倍,則它的側(cè)面展開(kāi)圖的圓心角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在實(shí)數(shù)集R上的不恒為零的偶函數(shù),且對(duì)任意實(shí)數(shù)x都有xf(x+1)=(1+x)f(x),則f(
2013
2
)
的值是( 。
A、
2013
2
B、1
C、
2015
2
D、0

查看答案和解析>>

同步練習(xí)冊(cè)答案