【題目】 山東省《體育高考方案》于20122月份公布,方案要求以學(xué)校為單位進(jìn)行體育測(cè)試,某校對(duì)高三1班同學(xué)按照高考測(cè)試項(xiàng)目按百分制進(jìn)行了預(yù)備測(cè)試,并對(duì)50分以上的成績(jī)進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示,若90~100分?jǐn)?shù)段的人數(shù)為2.

)請(qǐng)估計(jì)一下這組數(shù)據(jù)的平均數(shù)M;

)現(xiàn)根據(jù)初賽成績(jī)從第一組和第五組(從低分段到高分段依次為第一組、第二組、、第五組)中任意選出兩人,形成一個(gè)小組.若選出的兩人成績(jī)差大于20,則稱這兩人為幫扶組,試求選出的兩人為幫扶組的概率.

【答案】73;()選出的兩人為幫扶組的概率為.

【解析】

本試題主要考查了概率的運(yùn)算和統(tǒng)計(jì)圖的運(yùn)用.

1)由由頻率分布直方圖可知:50~60分的頻率為0.1, 60~70分的頻率為0.25, 70~80分的頻率為0.45, 80~90分的頻率為0.15, 90~100分的頻率為0.05,然后利用平均值公式,可知這組數(shù)據(jù)的平均數(shù)M=55×0.1+65×0.25+75×0.45+85×0.15+95×0.05=73()

2)中利用90~100分?jǐn)?shù)段的人數(shù)為2人,頻率為0.05;得到總參賽人數(shù)為40,然后得到0~60分?jǐn)?shù)段的人數(shù)為40×0.1=4人,第五組中有2人,這樣可以得到基本事件空間為15種,然后利用其中兩人成績(jī)差大于20的選法有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2)共8種,得到概率值

解:(Ⅰ)由頻率分布直方圖可知:50~60分的頻率為0.1, 60~70分的頻率為0.25, 70~80分的頻率為0.45, 80~90分的頻率為0.15, 90~100分的頻率為0.05……………2

這組數(shù)據(jù)的平均數(shù)M=55×0.1+65×0.25+75×0.45+85×0.15+95×0.05=73()…4

(Ⅱ)∵90~100分?jǐn)?shù)段的人數(shù)為2人,頻率為0.05;

參加測(cè)試的總?cè)藬?shù)為=40人,……………………………………5

∴50~60分?jǐn)?shù)段的人數(shù)為40×0.1=4人, …………………………6

設(shè)第一組50~60分?jǐn)?shù)段的同學(xué)為A1,A2A3,A4;第五組90~100分?jǐn)?shù)段的同學(xué)為B1,B2

則從中選出兩人的選法有:(A1A2),(A1A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2B2),(A3,A4),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1B2),共15種;其中兩人成績(jī)差大于20的選法有:(A1,B1),(A1,B2),(A2B1),(A2B2),(A3,B1),(A3,B2),(A4B1),(A4,B2)共8…………………………11

則選出的兩人為幫扶組的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù) 的最大值;

(2)設(shè) ,且 ,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】凸多面體的每個(gè)面均為三角形,每條棱上均標(biāo)記字母之一,且每個(gè)面的三條邊上恰各有一個(gè)。對(duì)每一個(gè)面,當(dāng)旋轉(zhuǎn)多面體使該面在我們眼前時(shí),按照字母順序觀察其三邊,若是逆時(shí)針方向,則稱其為正面;否則,稱其為反面。證明:正面與反面的數(shù)目之差能被4整除。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足。

(1)若成等比數(shù)列,求的值。

(2)是否存在,使數(shù)列為等差數(shù)列?若存在,求出所有這樣的;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知焦點(diǎn)在軸上的拋物線過點(diǎn),橢圓的兩個(gè)焦點(diǎn)分別為 ,其中的焦點(diǎn)重合,過與長(zhǎng)軸垂直的直線交橢圓兩點(diǎn)且,曲線是以原點(diǎn)為圓心以 為半徑的圓.

(1)求的方程;

(2)若動(dòng)直線與圓相切,且與交與兩點(diǎn),三角形 的面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xOy中,曲線C1的普通方程為,曲線C2參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為

(1)求C1的參數(shù)方程和的直角坐標(biāo)方程;

(2)已知P是C2上參數(shù)對(duì)應(yīng)的點(diǎn),Q為C1上的點(diǎn),求PQ中點(diǎn)M到直線的距離取得最大值時(shí),點(diǎn)Q的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若有兩個(gè)大于的零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù),當(dāng)時(shí),函數(shù)有極值

1)求函數(shù)的解析式;

2)求函數(shù)的極值;

3)若關(guān)于的方程有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案