分析 利用積化和差以及二倍角公式,化簡2cos2αcos2β,化簡所求的表達(dá)式,利用已知條件求出αβ的正切函數(shù),
利用同角三角函數(shù)基本關(guān)系式化簡求解即可.
解答 解:因?yàn)?cos2αcos2β=cos2(α+β)+cos2(α-β)
=1-2sin2(α+β)+1-2sin2(α-β)
則2cos2αcos2β+psin2(α+β)+2sin2(α-β)
=2-2sin2(α+β)+psin2(α+β)
=2-2sin2(α+β)+2psin(α+β)cos(α+β)
因?yàn)楹瘮?shù)y=x2-4px-2的圖象經(jīng)過M(tanα,1),N(tanβ,1)兩點(diǎn).
可得1=tan2α-4ptanα-2
1=tan2β-4ptanβ-2
所以tanα,tanβ是x2-4px-3=0的兩根
tanα+tanβ=4p
tanαtanβ=-3,
又tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=$\frac{4p}{1-(-3)}$=p,
所以2-2sin2(α+β)+2psin(α+β)cos(α+β)
=2-2sin2(α+β)+2tan(α+β)sin(α+β)cos(α+β)
=$\frac{2co{s}^{2}(α+β)+2psin(α+β)cos(α+β)}{si{n}^{2}(α+β)+co{s}^{2}(α+β)}$
=$\frac{2+2ptan(α+β)}{ta{n}^{2}(α+β)+1}$
=$\frac{2+2{p}^{2}}{{p}^{2}+1}$
=2.
點(diǎn)評(píng) 本題考查兩角和與差的三角函數(shù),積化和差公式的應(yīng)用,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 樣本患病率X/n服從B(n,p) | |
B. | n人中患高血壓的人數(shù)X服從B(n,p) | |
C. | 患病人數(shù)與樣本患病率均不服從B(n,p) | |
D. | 患病人數(shù)與樣本患病率均服從B(n,p) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | $\frac{\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | g(x)=2sin2x | B. | g(x)=2cos2x | C. | g(x)=2sin(2x+$\frac{π}{6}$) | D. | g(x)=2sin(2x-$\frac{π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | 6 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com