8.某地人群中高血壓的患病率為p,由該地區(qū)隨機(jī)抽查n人,則( 。
A.樣本患病率X/n服從B(n,p)
B.n人中患高血壓的人數(shù)X服從B(n,p)
C.患病人數(shù)與樣本患病率均不服從B(n,p)
D.患病人數(shù)與樣本患病率均服從B(n,p)

分析 由已知條件直接利用二項(xiàng)分布的定義求解.

解答 解:∵某地人群中高血壓的患病率為p,由該地區(qū)隨機(jī)抽查n人,
∴由二項(xiàng)分布定義得:
樣本患病率X/n不服從B(n,p),
n人中患高血壓的人數(shù)X服從B(n,p),
從而得到A、C、D錯(cuò)誤,B正確.
故選:B.

點(diǎn)評(píng) 本題考查命題真假的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意二項(xiàng)分布的定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.展開(1+2x)3=1+6x+mx2+8x3,則m=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知定義域?yàn)镽的函數(shù)f(x)滿足f(x)=$\frac{1}{2}$f(x-6),當(dāng)x∈[0,6]時(shí),f(x)=$\sqrt{3-|x-3|}$,若關(guān)于x的方程f(x)=m(x+6)在區(qū)間[-6,+∞)內(nèi)恰有三個(gè)不等實(shí)根,則實(shí)數(shù)m的值為( 。
A.-$\frac{\sqrt{6}}{12}$B.$\frac{\sqrt{6}}{12}$C.$\frac{\sqrt{3}}{9}$D.以上均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=4an-an+1(n∈N*),若a1=1,則an=(n+1)•2n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an}滿足a1=1,a2=-2,且an+1=an+an+2,n∈N*,則a5=2;數(shù)列{an}的前2016項(xiàng)和為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.甲、乙兩人射擊,甲射擊一次中靶的概率是p1,乙射擊一次中靶的概率是p2,且$\frac{1}{{p}_{1}}$,$\frac{1}{{p}_{2}}$是方程x2-5x+6=0的兩個(gè)實(shí)根,已知甲射擊5次,中靶次數(shù)的方差是$\frac{5}{4}$.
(1)求p1,p2的值;
(2)若兩人各射擊2次,至少中靶3次就算完成目的,則完成目的概率是多少?
(3)若兩人各射擊1次,至少中靶1次就算完成目的,則完成目的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若α∈(0,π),且sinα+2cosα=2,則tan$\frac{α}{2}$等于( 。
A.3B.2C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)y=x2-4px-2的圖象經(jīng)過M(tanα,1),N(tanβ,1)兩點(diǎn).求2cos2αcos2β+psin2(α+β)+2sin2(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知正項(xiàng)數(shù)列{an},{bn},{cn}滿足bn=a2n-1,cn=a2n,n∈N*,數(shù)列{bn}的前n項(xiàng)和為Sn,(bn+1)2=4Sn,數(shù)列{cn}的前n項(xiàng)和Tn=3n-1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和An

查看答案和解析>>

同步練習(xí)冊(cè)答案