6.已知a=$lo{g}_{\frac{1}{3}}{2}^{-1}$,b=ln2,c=${5}^{-\frac{1}{2}}$,則( 。
A.a<b<cB.b<a<cC.c<b<aD.c<a<b

分析 先利用換底公式得到$lo{g}_{\frac{1}{3}}{2}^{-1}$=log32,利用對數(shù)的性質(zhì)可比較log32與ln2的大小,再與c比較即可.

解答 解:a=$lo{g}_{\frac{1}{3}}{2}^{-1}$=log32,b=ln2,c=${5}^{-\frac{1}{2}}$=$\frac{1}{\sqrt{5}}$<$\frac{1}{2}$,
∴l(xiāng)n2>log32>log3$\sqrt{3}$=$\frac{1}{2}$,
∴c<a<b,
故選:D.

點評 本題考查對數(shù)值大小的比較,比較a與b的大小是難點,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知A={x|log3x>1},B={x|y=$\sqrt{x-1}$+$\sqrt{3-x}$},那么有( 。
A.A∩B=∅B.A⊆BC.B⊆AD.A=B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)全集U={1,2,3,4,5,6},A={2,4,6}則CUA=( 。
A.{1,3,5,6}B.{1,3,5}C.{2,3,4}D.{1,2,3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)$f(x)=\left\{\begin{array}{l}-{2^{-x}}+1\\ f({x-1})\end{array}\right.$$\begin{array}{l}{x≤0}\\{x>0}\end{array}$,則下列命題中:
(1)函數(shù)f(x)為周期函數(shù);
(2)函數(shù)f(x)在區(qū)間(m,m+1)(m∈N)上單調(diào)遞增;
(3)函數(shù)f(x)在x=m-1(m∈N)取到最大值0,且無最小值;
(4)若方程f(x)=loga(x+2)(0<a<1)有且只有兩個不同的實根,則$a∈[{\frac{1}{3},\frac{1}{2}})$.
正確的命題的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,邊長為2的正方形ABCD繞AB邊所在直線旋轉(zhuǎn)一定的角度(小于180°)到ABEF的位置.
(1)若∠CBE=120°,求三棱錐B-ADF的外接球的表面積;
(2)若K為線段BE上異于B,E的點,CE=2$\sqrt{2}$.設(shè)直線AK與平面BDF所成角為φ,當(dāng)30°≤φ≤45°時,求BK的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={x|y=$\sqrt{x}$},且B⊆A,則集合B可能是(  )
A.{1,2,3}B.{x|-1<x<1}C.{-2,2}D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)$f(x)=\left\{\begin{array}{l}{(\frac{1}{2})^x},x≥3\\ f(x+1),x<3\end{array}\right.$,則$f(1-{log_{\frac{1}{2}}}3)$=$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.曲線y=xlnx在點(1,0)處的切線方程是( 。
A.y=x-1B.y=x+1C.y=2x-2D.y=2x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.?dāng)?shù)列{an},{bn}中,a1=-4,b1=1,an+1=2an+bn(n∈N*),且數(shù)列$\left\{{\frac{a_n}{2^n}}\right\}$是等差數(shù)列.
(1)求{bn}的前n項Tn
(2)設(shè)數(shù)列{an}的前n項和為Sn,求使Sn最小的n的值.

查看答案和解析>>

同步練習(xí)冊答案