20.若${(1-2x)^7}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+$…$+{a_7}{x^7}$,則a0+a1+a2+…+a7=-1.

分析 由${(1-2x)^7}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+$…$+{a_7}{x^7}$,令x=1,即可得出.

解答 解:由${(1-2x)^7}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+$…$+{a_7}{x^7}$,令x=1,可得
則a0+a1+a2+…+a7=(1-2)7=-1.
故答案為:-1.

點評 本題考查了二項式定理的應用,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.某班54個學生中,參加美術課外活動小組的有32人,參加舞蹈課外活動小組的有24人,這兩個課外活動小組都沒有參加的有15人,從該班中任意抽取1名同學,他參加了兩個課外活動小組的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.命題p:“?x0∈R“,x0-1≤0的否定¬p為( 。
A.?x∈R,x2-1≤0B.?x∈R,x2-1>0C.?x0∈R,x02-1>0D.?x0∈R,x02-1<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,三棱錐S-ABC中,點M,N,P分別為棱SA,SB,SC的中點,且∠PMN=90°.
(1)求證:平面PMN∥平面ABC;
(2)若平面SAC⊥平面ABC,求證:平面SAC⊥平面SAB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在平面直角坐標系中,已知兩定點E(1,0)、$G(6,\frac{3}{2})$,⊙C的方程為x2+y2-2mx+(10-2m)y+10m-29=0.當⊙C的半徑取最小值時:
(1)求出此時m的值,并寫出⊙C的標準方程;
(2)在x軸上是否存在異于點E的另外一個點F,使得對于⊙C上任意一點P,總有$\frac{{|{PE}|}}{{|{PF}|}}$為定值?若存在,求出點F的坐標,若不存在,請說明你的理由;
(3)在第(2)問的條件下,求$μ=\frac{{4{{|{PG}|}^2}-{{|{PE}|}^2}-6|{PE}|}}{{2|{PG}|-|{PE}|-3}}-2|{PE}|$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.定積分${∫}_{-1}^{1}$(2x+sinx)dx的值為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.如果函數(shù)f(x)=cos(ωx+$\frac{π}{4}$)(ω>0)的相鄰兩個對稱中心之間的距離為$\frac{π}{6}$,則ω=( 。
A.3B.6C.12D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知向量$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(2,m),若O,A,B三點能構成三角形,則( 。
A.m=4B.m≠4C.m≠-1D.m∈R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知$x,y∈(0,+∞),{2^{x-3}}={({\frac{1}{2}})^y}$,若$\frac{1}{x}+\frac{m}{y}(m>0)$的最小值為3,則m等于( 。
A.2B.$2\sqrt{2}$C.3D.4

查看答案和解析>>

同步練習冊答案