15.在平面直角坐標(biāo)系中,已知兩定點(diǎn)E(1,0)、$G(6,\frac{3}{2})$,⊙C的方程為x2+y2-2mx+(10-2m)y+10m-29=0.當(dāng)⊙C的半徑取最小值時(shí):
(1)求出此時(shí)m的值,并寫(xiě)出⊙C的標(biāo)準(zhǔn)方程;
(2)在x軸上是否存在異于點(diǎn)E的另外一個(gè)點(diǎn)F,使得對(duì)于⊙C上任意一點(diǎn)P,總有$\frac{{|{PE}|}}{{|{PF}|}}$為定值?若存在,求出點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說(shuō)明你的理由;
(3)在第(2)問(wèn)的條件下,求$μ=\frac{{4{{|{PG}|}^2}-{{|{PE}|}^2}-6|{PE}|}}{{2|{PG}|-|{PE}|-3}}-2|{PE}|$的取值范圍.

分析 (1)運(yùn)用配方和二次函數(shù)的最值求法,即可得到所求圓的方程;
(2)設(shè)P(x,y),定點(diǎn)F(m,0)(m為常數(shù)),運(yùn)用兩點(diǎn)的距離公式,化簡(jiǎn)整理,再由恒等式的性質(zhì),即可得到定點(diǎn)F的坐標(biāo)和$\frac{{|{PE}|}}{{|{PF}|}}$的定值;
(3)由上問(wèn)可知對(duì)于⊙C上任意一點(diǎn)P總有$|{PF}|=\frac{1}{2}|{PE}|$,可得||PG|-|PF||≤|FG|(當(dāng)P、F、G三點(diǎn)共線時(shí)取等號(hào)),又$|{FG}|=\frac{5}{2}$,故2|PG|-|PE|∈[-5,5].化簡(jiǎn)μ的關(guān)系式,結(jié)合對(duì)勾函數(shù)的單調(diào)性,即可得到所求范圍.

解答 解:(1)⊙C的方程為x2+y2-2mx+(10-2m)y+10m-29=0
可得⊙C的標(biāo)準(zhǔn)式為:(x-m)2+[y-(m-5)]2=2(m-5)2+4,
當(dāng)m=5時(shí),⊙C的半徑取最小值,此時(shí)⊙C的標(biāo)準(zhǔn)方程為(x-5)2+y2=4;
(2)設(shè)P(x,y),定點(diǎn)F(m,0)(m為常數(shù)),則${λ^2}=\frac{{{{|{PE}|}^2}}}{{{{|{PF}|}^2}}}=\frac{{{{(x-1)}^2}+{y^2}}}{{{{(x-m)}^2}+{y^2}}}$.
∵(x-5)2+y2=4,∴y2=4-(x-5)2,代入上式,
得:${λ^2}=\frac{{{{(x-1)}^2}+4-{{(x-5)}^2}}}{{{{(x-m)}^2}+4-{{(x-5)}^2}}}=\frac{8x-20}{{(10-2m)x-(21-{m^2})}}$.
由于λ取值與x無(wú)關(guān),∴$\frac{8}{10-2m}=\frac{20}{{21-{m^2}}}⇒m=4$(m=1舍去).
此時(shí)點(diǎn)F的坐標(biāo)為(4,0),λ2=4即λ=2;
(3)由上問(wèn)可知對(duì)于⊙C上任意一點(diǎn)P總有$|{PF}|=\frac{1}{2}|{PE}|$,
故$2|{PG}|-|{PE}|=2({|{PG}|-\frac{1}{2}|{PE}|})=2({|{PG}|-|{PF}|})$,
而||PG|-|PF||≤|FG|(當(dāng)P、F、G三點(diǎn)共線時(shí)取等號(hào)),
又$|{FG}|=\frac{5}{2}$,故2|PG|-|PE|∈[-5,5].
∴$μ=\frac{{4{{|{PG}|}^2}-{{|{PE}|}^2}-6|{PE}|}}{{2|{PG}|-|{PE}|-3}}-2|{PE}|=\frac{{{{(2|{PG}|)}^2}-{{(|{PE}|+3)}^2}+9}}{{2|{PG}|-|{PE}|-3}}-2|{PE}|$
=$\frac{{(2|{PG}|+|{PE}|+3)(2|{PG}|-|{PE}|-3)+9}}{{2|{PG}|-|{PE}|-3}}-2|{PE}|$
=$(2|{PG}|-|{PE}|-3)+\frac{9}{{2|{PG}|-|{PE}|-3}}+6$,
令t=2|PG|-|PE|-3(t∈[-8,0)∪(0,2]),則$μ=t+\frac{9}{t}+6$,
根據(jù)對(duì)勾函數(shù)的單調(diào)性可得:
當(dāng)0<t≤2,可得函數(shù)遞減,可得μ≥$\frac{25}{2}$;
當(dāng)-8≤t<0,可得t+$\frac{9}{t}$+6≤-2$\sqrt{(-t)•\frac{9}{-t}}$+6=0,
可得$μ∈({-∞,0}]∪[{\frac{25}{2},+∞})$.

點(diǎn)評(píng) 本題考查圓的方程的一般式和標(biāo)準(zhǔn)式,考查線段長(zhǎng)的比為定值的求法,以及實(shí)數(shù)的取值范圍,注意運(yùn)用兩點(diǎn)的距離公式和轉(zhuǎn)化思想,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知數(shù)列{an}滿足${a_n}={2^n}$,則數(shù)列{an•bn}滿足對(duì)任意的n∈N+,都有b1an+b2an-1+…+bna1=${2^n}-\frac{n}{2}-1$,則數(shù)列{an•bn}的前n項(xiàng)和Tn=$\frac{(n-1)•{2}^{n}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.給出下列語(yǔ)句:
①若a,b為正實(shí)數(shù),a≠b,則a3+b3>a2b+ab2;
②若a,b,m為正實(shí)數(shù),a<b,則$\frac{a+m}{b+m}<\frac{a}$
③若$\frac{a}{c^2}>\frac{c^2}$,則a>b;
④當(dāng)x∈(0,$\frac{π}{2}$)時(shí),sin x+$\frac{2}{sinx}$的最小值為2$\sqrt{2}$,其中結(jié)論正確的是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.曲線y=ex,y=e-x和直線x=1圍成的圖形面積是( 。
A.e+$\frac{1}{e}$-2B.e-$\frac{1}{e}$+2C.e+$\frac{1}{e}$D.e-$\frac{1}{e}$-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),且$f(x)=-{x^3}+3f'(2)x+\int_0^2{f(x)dx}$,則$\int_0^2{f(x)dx}$=-32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若${(1-2x)^7}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+$…$+{a_7}{x^7}$,則a0+a1+a2+…+a7=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若f(x)的定義域?yàn)镽,f′(x)>3恒成立,f(1)=9,則f(x)>3x+6解集為( 。
A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.(1.+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在區(qū)間[-3,2]上隨機(jī)取一個(gè)數(shù)x,則事件“1≤($\frac{1}{2}$)x≤4”發(fā)生的概率為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知?jiǎng)訄A過(guò)定點(diǎn)(0,2),且在x軸上截得的弦長(zhǎng)為4,記動(dòng)圓圓心的軌跡為曲線C.
(1)求直線x-4y+2=0與曲線C圍成的區(qū)域面積;
(2)點(diǎn)P在直線l:x-y-2=0上,點(diǎn)Q(0,1),過(guò)點(diǎn)P作曲線C的切線PA、PB,切點(diǎn)分別為A、B,證明:存在常數(shù)λ,使得|PQ|2=λ|QA|•|QB|,并求λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案