9.已知向量$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(2,m),若O,A,B三點能構(gòu)成三角形,則( 。
A.m=4B.m≠4C.m≠-1D.m∈R

分析 當(dāng)三點O,A,B共線時,利用向量共線定理可得m-4=0,解得m,即可得出.

解答 解:當(dāng)三點O,A,B共線時,m-4=0,解得m=4.
∴m≠4時,O,A,B三點能構(gòu)成三角形.
故選:B.

點評 本題考查了向量共線定理,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.自然數(shù)列按如圖規(guī)律排列,若2017在第m行第n個數(shù),則log2$\frac{n}{m}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若${(1-2x)^7}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+$…$+{a_7}{x^7}$,則a0+a1+a2+…+a7=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.五個人圍坐在一張圓桌旁,每個人面前放著完全相同的硬幣,所有人同時翻轉(zhuǎn)自己的硬幣.若硬幣正面朝上,則這個人站起來; 若硬幣正面朝下,則這個人繼續(xù)坐著.那么,沒有相鄰的兩個人站起來的概率為$\frac{11}{32}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在區(qū)間[-3,2]上隨機(jī)取一個數(shù)x,則事件“1≤($\frac{1}{2}$)x≤4”發(fā)生的概率為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={0,1,2},B={y|y=2x,x∈A},則A∩B=( 。
A.{0,1,2}B.{1,2}C.{1,2,4}D.{1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知角α的終邊過點$P({tan\frac{3π}{4},2})$,則cosα的值為-$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則該幾何體體積是( 。
A.$\frac{{(8+π)\sqrt{3}}}{3}$B.$\frac{{(8+2π)\sqrt{3}}}{6}$C.$\frac{{(8+π)\sqrt{3}}}{6}$D.$\frac{{(4+π)\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表,其中《方田》章有弧田面積計算問題,計算術(shù)曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面積計算公式為:弧田面積=$\frac{1}{2}•(弦×矢+矢×矢)$,弧田是由圓弧(簡稱為弧田。┖鸵詧A弧的兩端為頂點的線段(簡稱為弧田弦)圍成的平面圖形,公式中“弦”指的是弧
田弦的長,“矢”等于弧田弧所在圓的半徑與圓心到弧田弦的距離之差.現(xiàn)有一弧田,其弦長AB等于6米,其弧所在圓為圓O,若用上述弧田面積計算公式算得該弧田的面積為$\frac{7}{2}$平方米,則cos∠AOB=( 。
A.$\frac{7}{25}$B.$\frac{3}{25}$C.$\frac{12}{25}$D.$\frac{2}{25}$

查看答案和解析>>

同步練習(xí)冊答案