【題目】為了研究家用轎車(chē)在高速公路上的車(chē)速情況,交通部門(mén)對(duì)100名家用轎車(chē)駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時(shí)的平均車(chē)速情況為:在55名男性駕駛員中,平均車(chē)速超過(guò)的有40人,不超過(guò)的有15人;在45名女性駕駛員中,平均車(chē)速超過(guò)的有20人,不超過(guò)的有25人.
(1)完成下面的列聯(lián)表,并判斷是否有%的把握認(rèn)為平均車(chē)速超過(guò)的人與性別有關(guān).
平均車(chē)速超過(guò)人數(shù) | 平均車(chē)速不超過(guò)人數(shù) | 合計(jì) | |
男性駕駛員人數(shù) | |||
女性駕駛員人數(shù) | |||
合計(jì) |
(2)以上述數(shù)據(jù)樣本來(lái)估計(jì)總體,現(xiàn)從高速公路上行駛的大量家用轎車(chē)中隨機(jī)抽取3輛,記這3輛車(chē)中駕駛員為男性且車(chē)速超過(guò)的車(chē)輛數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列和數(shù)學(xué)期望.
參考公式與數(shù)據(jù):
,其中.
【答案】(Ⅰ)表格見(jiàn)解析,有關(guān)(Ⅱ)
【解析】
(Ⅰ)根據(jù)題目中的數(shù)據(jù),完成列聯(lián)表,求出K2=8.13>7.879,從有99.5%的把握認(rèn)為平均車(chē)速超過(guò)100km/h與性別有關(guān).
(Ⅱ)記這3輛車(chē)中駕駛員為男性且車(chē)速超過(guò)100km/h的車(chē)輛數(shù)為X,推導(dǎo)出X服從二項(xiàng)分布,即,由此能求出在隨機(jī)抽取的10輛車(chē)中平均有4輛車(chē)中駕駛員為男性且車(chē)速超過(guò)100km/h.
(Ⅰ)
平均車(chē)速超過(guò)人數(shù) | 平均車(chē)速不超過(guò)人數(shù) | 合計(jì) | |
男性駕駛員人數(shù) | 40 | 15 | 55 |
女性駕駛員人數(shù) | 20 | 25 | 45 |
合計(jì) | 60 | 40 | 100 |
因?yàn)?/span>,
所以有%的把握認(rèn)為平均車(chē)速超過(guò)與性別有關(guān);
(Ⅱ)根據(jù)樣本估計(jì)總體的思想,從高速公路上行駛的大量家用轎車(chē)中隨機(jī)抽取1輛,駕駛員為男性且車(chē)速超過(guò)的車(chē)輛的概率為.
X可取值是0,1,2,3,,有:
,,
,,
X的分布列為
X | 0 | 1 | 2 | 3 |
P |
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年消毒液和口罩成了搶手年貨,老百姓幾乎人人都需要,但對(duì)于這種口罩,大多數(shù)人不是很了解.現(xiàn)隨機(jī)抽取40人進(jìn)行調(diào)查,其中45歲以下的有20人,在接受調(diào)查的40人中,對(duì)于這種口罩了解的占,其中45歲以上(含45歲)的人數(shù)占.
(1)將答題卡上的列聯(lián)表補(bǔ)充完整;
(2)判斷是否有的把握認(rèn)為對(duì)這種口罩的了解與否與年齡有關(guān).
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,,.
(Ⅰ)若點(diǎn)為的中點(diǎn),求證:∥平面;
(Ⅱ)當(dāng)平面平面時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的三邊長(zhǎng)分別為a,b,c,有以下四個(gè)命題:
①以,,為邊長(zhǎng)的三角形一定存在;
②以,,為邊長(zhǎng)的三角形一定存在;
③以,,為邊長(zhǎng)的三角形一定存在;
④以,,為邊長(zhǎng)的三角形一定存在.
其中正確的命題為( )
A.①③B.②③C.②④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】試求最小的正整數(shù),使得對(duì)于任何個(gè)連續(xù)正整數(shù)中,必有一數(shù),其各位數(shù)字之和是7的倍數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)在時(shí),函數(shù)值y的取值區(qū)間恰為[],就稱(chēng)區(qū)間為的一個(gè)“倒域區(qū)間”.定義在上的奇函數(shù),當(dāng)時(shí),.
(Ⅰ)求的解析式;
(Ⅱ)求函數(shù)在內(nèi)的“倒域區(qū)間”;
(Ⅲ)若函數(shù)在定義域內(nèi)所有“倒域區(qū)間”上的圖像作為函數(shù)=的圖像,是否存在實(shí)數(shù),使集合恰含有2個(gè)元素.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠有甲、乙兩生產(chǎn)車(chē)間,其污水瞬時(shí)排放量(單位:)關(guān)于時(shí)間(單位:)的關(guān)系均近似地滿(mǎn)足函數(shù),其圖象如圖所示:
(1)根據(jù)圖象求函數(shù)解析式;
(2)若甲車(chē)間先投產(chǎn),1小時(shí)后乙車(chē)間再投產(chǎn),求該廠兩車(chē)間都投產(chǎn)時(shí)刻的污水排放量;
(3)由于受工廠污水處理能力的影響,環(huán)保部門(mén)要求該廠兩車(chē)間任意時(shí)刻的污水排放量之和不超過(guò),若甲車(chē)間先投產(chǎn),為滿(mǎn)足環(huán)保要求,乙車(chē)間比甲車(chē)間至少需推遲多少小時(shí)投產(chǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)當(dāng)時(shí),求證:;
(2)求的單調(diào)區(qū)間;
(3)設(shè)數(shù)列的通項(xiàng),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象的一個(gè)對(duì)稱(chēng)中心與它相鄰的一條對(duì)稱(chēng)軸之間的距離為.
(1)求函數(shù)f(x)的對(duì)稱(chēng)軸方程及單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象向右平移個(gè)單位后,再將得到的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,當(dāng)x∈(,)時(shí),求函數(shù)g(x)的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com