7.在空間直角坐標(biāo)系中,A(0,0,2),B(2,2,2),在平面xoy中找一點(diǎn)P,使得|PA|+|PB|最小,則點(diǎn)P的坐標(biāo)為( 。
A.(0,0,0)B.(2,2,0)C.(1,1,0)D.(0,1,0)

分析 畫出圖形,求出A關(guān)于平面xoy的對稱點(diǎn)的D坐標(biāo),連結(jié)BD與平面xoy的交點(diǎn)P,即可求解.

解答 解:如圖:A關(guān)于平面xoy的對稱點(diǎn)的D坐標(biāo)(0,0,-2),
在平面xoy中找一點(diǎn)P,使得|PA|+|PB|最小,就是連結(jié)BD與平面xoy的交點(diǎn)P,顯然,P是OC的中點(diǎn),(1,1,0).
故選:C.

點(diǎn)評 本題考查空間點(diǎn)的坐標(biāo)的求法,對稱知識的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)等差數(shù)列{an}的公差為6,且a4為a2和a3的等比中項(xiàng).則a1=-14,數(shù)列{an}的前n項(xiàng)和Sn=3n2-17n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)函數(shù)f(x)在x=1處存在導(dǎo)數(shù),且f′(1)=1,則$\lim_{△x→0}$ $\frac{f(1+△x)-f(1)}{3△x}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.用弧度制表示頂點(diǎn)在原點(diǎn),始邊重合于x軸的非負(fù)半軸,終邊落在陰影部分內(nèi)的角的集合(包括邊界,如圖所示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.變量x,y滿足約束條件$\left\{\begin{array}{l}x≥0\\ x-2y≤2\\ y≤0\end{array}\right.$,當(dāng)目標(biāo)函數(shù)z=2x-y取得最大值時(shí),其最優(yōu)解為(2,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在長方體ABCD-A′B′C′D′中,G是三角形ACD′的重心,求證:3DG=DB′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系中,O為原點(diǎn),A(-1,0),B(0,$\sqrt{3}$),C(3,0),動(dòng)點(diǎn)D滿足|$\overrightarrow{CD}$|=1,
求(Ⅰ)動(dòng)點(diǎn)D的軌跡.
(Ⅱ)求|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OD}$|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知平行六面體ABCD-A′B′C′D′.求證:$\overrightarrow{AC}$+$\overrightarrow{AB}$+$\overrightarrow{AD}$=2$\overrightarrow{AC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)f(x)=x2-2ax+5(a>1)
(1)若f(x)的定義域與值域都是[1,a],求a值;
(2)在(1)的條件下,若關(guān)于x的不等式f(x)-5log2m>0在[-1,0]上恒成立,求m取值范圈.

查看答案和解析>>

同步練習(xí)冊答案