4.已知數(shù)列{an}滿足a1=a,a2=b,an+2=an+1-an(n∈N*),Sn是{an}的前n項的和,則a2004+S2004=( 。
A.a+bB.a-bC.-a+bD.-a-b

分析 通過求出前幾項找出規(guī)律:數(shù)列{an}是以6為周期的周期數(shù)列,進而可得結(jié)論.

解答 解:∵a1=a,a2=b,an+2=an+1-an
∴a3=b-a,
a4=(b-a)-b=-a,
a5=-a-(b-a)=-b,
a6=-b-(-a)=a-b,
a7=a-b-(-b)=a,
a8=a-(a-b)=b,
∴數(shù)列{an}是以6為周期的周期數(shù)列,
且a1+a2+a3+a4+a5+a6=a+b+(b-a)+(-a)+(-b)+(a-b)=0,
∵2004=334×6,
∴S2004=336×0=0,a2004=a6=a-b,
∴a2004+S2004=0+a-b=a-b,
故選:B.

點評 本題考查數(shù)列的周期,注意解題方法的積累,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.根據(jù)下面給出的數(shù)塔猜測123456×9+8=(  )
   1×9+2=11
  12×9+3=111
 123×9+4=1111
1234×9+5=11111.
A.1111110B.1111111C.1111112D.1111113

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列區(qū)間是函數(shù)y=2|cosx|的單調(diào)遞減區(qū)間的是( 。
A.(0,π)B.(-$\frac{π}{2}$,0)C.($\frac{3π}{2}$,2π)D.(-π,-$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知等差數(shù)列中,a4=1,a7+a9=16,則a12的值是( 。
A.15B.30C.31D.64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)f(x)=mx3-x+1在(-∞,+∞) 上是減函數(shù)的一個充分不必要條件是(  )
A.m<0B.m≤0C.m≤1D.m<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,已知直四棱柱ABCD-A1B1C1D1中,AA1=2,底面ABCD是直角梯形,A是直角,AB∥CD,AB=4,AD=2,DC=1,求異面直線BC1與DC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.兩人約定在20:00到21:00之間相見,并且先到者必須等遲到者40分鐘方可離去,如果兩人出發(fā)是各自獨立的,在20:00到21:00各時刻相見的可能性是相等的,則兩人在約定時間內(nèi)相見的概率為$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=alnx-ax-3(a∈R)
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,問:m在什么范圍取值時,對于任意的t∈[1,2],函數(shù)g(x)=x3+x2[$\frac{m}{2}$+f′(x)]在區(qū)間(t,3)上總存在極值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設(shè)函數(shù)f(x)=$\frac{1}{x+1}$,點A0表示坐標原點,點An(n,f(n))(n∈N*),若向量an=$\overrightarrow{{A}_{0}{A}_{1}}$+$\overrightarrow{{A}_{1}{A}_{2}}$+…+$\overrightarrow{{A}_{n-1}{A}_{n}}$,θn是an與i的夾角(其中i=(1,0)).則tanθ1+tanθ2+tanθ3等于( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習冊答案