7.下列的判斷錯(cuò)誤的是(  )
A.20.6>20.3B.log23>1
C.logax•logay=logaxyD.函數(shù)$f(x)=\frac{{{2^x}+1}}{{{2^x}-1}}$是奇函數(shù)

分析 A.利用函數(shù)y=2x的單調(diào)性即可判斷出正誤;
B.利用函數(shù)y=log2x的單調(diào)性即可判斷出正誤;
C.利用對數(shù)函數(shù)的單調(diào)性即可判斷出正誤;
D.計(jì)算f(-x)與-f(x)的關(guān)系即可判斷出正誤.

解答 解:∵A.20.6>20.3,正確;
B.log23>log22=1,正確;
C.∵loga(xy)=logax+logay≠=logax•logay,∴不正確;
D.∵f(-x)=$\frac{{2}^{-x}+1}{{2}^{-x}-1}$=$\frac{1+{2}^{x}}{1-{2}^{x}}$=-f(x),x≠0,∴函數(shù)f(x)是奇函數(shù).
綜上可得:只有C錯(cuò)誤.
故選:C.

點(diǎn)評 本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性及其運(yùn)算法則、函數(shù)的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱柱ABCD-A1B1C1D1中,AC⊥B1D,BB1⊥底面ABCD,E、F、H分別為AD、CD、DD1的中點(diǎn),EF與BD交于點(diǎn)G.
(1)證明:平面ACD1⊥平面BB1D;
(2)證明:GH∥平面ACD1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=(x2-3x+3)ex的定義域?yàn)閇-2,t],設(shè)f(-2)=m,f(t)=n.
(Ⅰ)試確定t的取值范圍,使得函數(shù)f(x)在[-2,t]上為單調(diào)函數(shù);
(Ⅱ)求證:m<n;
(Ⅲ)若不等式$\frac{f(x)}{{e}^{x}}$+7x-2>k(xlnx-1)(k為正整數(shù))對任意正實(shí)數(shù)恒成立,求的最大值,并證明lnx<$\frac{14}{9}$(解答過程可參考使用以下數(shù)據(jù)ln7≈1.95,ln8≈2.08)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)為11,則
$\underset{lim}{△x→0}$$\frac{f({x}_{0}-△x)-f({x}_{0})}{△x}$=-11;
$\underset{lim}{x→{x}_{0}}$$\frac{f(x)-f({x}_{0})}{2({x}_{0}-x)}$=-$\frac{11}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}滿足:a1=2,a3+a5=-4.
(Ⅰ)若數(shù)列{an}是等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若a4=-1,且2an+1=an+an+2+k(n∈N*,k∈R),
①證明數(shù)列{an+1-an}是等差數(shù)列;
②?求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知在△ABC中,點(diǎn)A(-1,0),B(0,$\sqrt{3}$),C(1,-2).
(Ⅰ)求邊AB上高所在直線的方程;
(Ⅱ)求△ABC的面積S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列命題錯(cuò)誤的是( 。
A.“若x≠a且x≠b,則x2-(a+b)x+ab≠0”的否命題是“若x=a或x=b,則x2-(a+b)x+ab=0”
B.若p∧q為假命題,則p,q均為假命題
C.命題“?x0∈(0,+∞)lnx0=x0-1”的否定是“?x∈(0,+∞),lnx≠x-1
D.“x>2”是“$\frac{1}{x}$<$\frac{1}{2}$”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=2cos2ωx+2$\sqrt{3}$sinωxcosωx-1,且f(x)的周期為2.
(Ⅰ)當(dāng)$x∈[{-\frac{1}{2},\frac{1}{2}}]$時(shí),求f(x)的最值;
(Ⅱ)若$f(\frac{α}{2π})=\frac{1}{4}$,求$cos(\frac{2π}{3}-α)$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)$f(x)=-2tanx+m,x∈[-\frac{π}{4},\frac{π}{3}]$有零點(diǎn),則實(shí)數(shù)m的取值范圍是$[-2\;,\;2\sqrt{3}]$.

查看答案和解析>>

同步練習(xí)冊答案