19.有4名優(yōu)秀學(xué)生A,B,C,D全部被保送到甲,乙,丙3所學(xué)校,每所學(xué)校至少去一名,則不同的保送方案共有( 。
A.26種B.32種C.36種D.56種

分析 每所學(xué)校至少去一名,那就是有兩名一定到同一所學(xué)校,先選擇這兩名同學(xué),再排列問題得以解決.

解答 解:第一步從4名優(yōu)秀學(xué)生選出2個組成復(fù)合元素共有${C}_{4}^{2}$,在把3個元素(包含一個復(fù)合元素)保送到甲、乙、丙3所學(xué)校有${A}_{3}^{3}$,
根據(jù)分步計數(shù)原理不同保送方案共有${C}_{4}^{2}•{A}_{3}^{3}$=36種.
故選:C.

點評 本題考查了排列組合的混合問題,先選后排是最最基本的指導(dǎo)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.對于定義在區(qū)間M上的函數(shù)f(x),若滿足對?x1,x2∈M且x1<x2時,都有f(x1)≤f(x2),則稱函數(shù)f(x)為區(qū)間M上的“非減函數(shù)”,若f(x)為區(qū)間[0,1]上的“非減函數(shù)”,且f(0)=0,f(x)+f(1-x)=1;又當(dāng)x∈[$\frac{3}{4}$,1]時,f(x)≤2x-1恒成立.有下列命題:①?x∈[0,1],f(x)≥0;②當(dāng)x1,x2∈[0,1]且x1≠x2時,f(x1)≠f(x2);③f($\frac{1}{7}$)+f($\frac{5}{11}$)+f($\frac{7}{13}$)+f($\frac{6}{7}$)=2;④當(dāng)x∈[$\frac{3}{4}$,1]時,f(f(x))≤f(x).
其中正確命題有( 。
A.②③B.①②③C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,角A,B,C所對的邊分別為a,b,c,滿足c=1,且cosBsinC+(a-sinB)cos(A+B)=0.
(1)求角C的大小;
(2)求a2+b2的最大值,并求取得最大值時角A,B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知棱長為1的正方體ABCD-A1B1C1D1中,E、F分別是AB、AD的中點,點P,Q分別在棱A1B1、A1D1上,且A1P=A1Q=x(0<x<1),設(shè)平面MEF∩平面MPQ=l,則下列結(jié)論中錯誤的是( 。
A.l∥平面ABCD
B.l⊥AC
C.存在x0∈(0,1),使平面MEF與平面MPQ垂直
D.當(dāng)x變化時,l是定直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知i為虛數(shù)單位,復(fù)數(shù)z=(1-i)(1+i)的模|z|的值是( 。
A.4B.2C.4iD.2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知復(fù)數(shù)f(n)=in(n∈N*),則集合{z|z=f(n)}中元素的個數(shù)是(  )
A.4B.3C.2D.無數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,AB為圓O的直徑,BC,CD為圓O的切線,B,D為切點.
(Ⅰ)求證:AD∥OC;
(Ⅱ)若圓O的半徑為2,求AD•OC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知拋物線C1:y2=2px(p>0)的焦點F與雙曲線C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點重合,C1與C2相交于點 A,B.
(1)若A,F(xiàn),B三點共線,求雙曲線C2的離心率e;
(2)設(shè)點P為雙曲線C2上異于A,B的任一點,直線AP、BP分別與x軸交于點M(m,0)和N(n,0),問:mn是否為定值?若為定值,請求出此定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某學(xué)校舉行知識競賽,第一輪選拔共設(shè)有A,B,C,D四個問題,規(guī)則如下:①每位參加者計分器的初始分均為10分,答對問題A,B,C,D分別加1分,2分,3分,6分,答錯任意題減2分;
②每答一題,計分器顯示累計分數(shù),當(dāng)累積分數(shù)小于8分時,答題結(jié)束,淘汰出局;當(dāng)累積分數(shù)大于或等于14分時,答題結(jié)束,進入下一輪;答完四題累計分數(shù)不足14分時,答題結(jié)束淘汰出局;
③每位參加者按A,B,C,D順序作答,直至答題結(jié)束.
假設(shè)甲同學(xué)對問題A,B,C,D回答正確的概率依次為$\frac{3}{4}$,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,且各題回答正確與否相互之間沒有影響.(Ⅰ)求甲同學(xué)能進入下一輪的概率;
(Ⅱ)用ξ表示甲同學(xué)本輪答題的個數(shù),求ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

同步練習(xí)冊答案