19.根據(jù)“2015年國民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)”中公布的數(shù)據(jù),從2011 年到2015 年,我國的第三產(chǎn)業(yè)在GDP中的比重如下:
年份20112012201320142015
年份代碼x12345
第三產(chǎn)業(yè)比重(%)44.345.546.948.150.5
(Ⅰ)在所給坐標(biāo)系中作出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(Ⅱ)建立第三產(chǎn)業(yè)在GDP中的比重y關(guān)于年份代碼x的回歸方程;
(Ⅲ)按照當(dāng)前的變化趨勢(shì),預(yù)測(cè)2017 年我國第三產(chǎn)業(yè)在GDP中的比重.
附注:回歸直線方程$\widehaty=\widehata+\widehatbx$中的斜率和截距的最小二乘估計(jì)公式分別為:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$,$\sum_{i=1}^5{{x_i}{y_i}}=720.9$.

分析 (1)利用題中所給的數(shù)據(jù)描點(diǎn)畫出散點(diǎn)圖即可;
(2)首先求得樣本中心點(diǎn),然后利用回歸方程計(jì)算公式求解即可;
(3)利用回歸方程的預(yù)測(cè)作用結(jié)合(2)中的結(jié)果進(jìn)行預(yù)測(cè)即可.

解答 解:(1)根據(jù)所給的數(shù)據(jù)繪制散點(diǎn)圖如圖所示:

(2)結(jié)合所給數(shù)據(jù)計(jì)算可得:
$\overline{x}=\frac{1+2+3+4+5}{5}=3$,$\overline{y}=\frac{44.3+45.5+46.9+48.1+50.5}{5}=47.06$,
則$\widehat=\frac{\sum_{i=1}^{n=5}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{5}{({x}_{i}-\overline{x})}^{2}}=1.5$,$\widehat{a}=\overline{y}-\widehat\overline{x}=42.56$,
故回歸方程為:$\widehat{y}=\widehatx+\hat{a}=1.5x+42.56$.
(3)代入2017年的年份代碼x=7可得:$\hat{y}=1.5×7+42.56=53.06$,
故按照當(dāng)前的變化趨勢(shì),預(yù)測(cè)2017 年我國第三產(chǎn)業(yè)在GDP中的比重將達(dá)到53.06%.

點(diǎn)評(píng) 本題考查回歸方程的定義及其應(yīng)用,散點(diǎn)圖的繪制等,重點(diǎn)考查學(xué)生對(duì)基礎(chǔ)概念的理解和計(jì)算能力,屬于中等題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\overrightarrow a=(x-1,3),\overrightarrow b=(2,1)$,則$\overrightarrow a⊥\overrightarrow b$的充要條件是x=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知數(shù)列{an}為等差數(shù)列,若a1+a5+a9=4π,則sina5的值為( 。
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列命題:
①“x=2”是“x2-4x+4=0”的必要不充分條件;
②“圓心到直線的距離等于半徑”是“這條直線為圓的切線”的充分必要條件;
③“sin α=sin β”是“α=β”的充要條件;
④“ab≠0”是“a≠0”的充分不必要條件.
其中為真命題的是( 。
A.①③B.②④C.②③D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)F1,F(xiàn)2分別為橢圓${C_1}:\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=1$(a1>b1>0)與雙曲線${C_2}:\frac{x^2}{a_1^2}-\frac{y^2}{b_1^2}=1$(a2>b2>0)的公共焦點(diǎn),它們?cè)诘谝幌笙迌?nèi)交于點(diǎn)M,$∠{F_1}M{F_2}={90^0}$,若橢圓的離心率${e_1}∈[\frac{3}{4},\frac{{2\sqrt{2}}}{3}]$,則雙曲線C2的離心率e2的取值范圍為$[\frac{{2\sqrt{14}}}{7},\sqrt{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為了保護(hù)環(huán)境,發(fā)展低碳經(jīng)濟(jì),某單位在國家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),新上了把二氧化碳處理轉(zhuǎn)化為一種可利用的化工產(chǎn)品的項(xiàng)目,經(jīng)測(cè)算,該項(xiàng)目月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為y=$\left\{\begin{array}{l}{\frac{1}{3}{x}^{3}-80{x}^{2}+5040x,x∈[120,144)}\\{\frac{1}{2}{x}^{2}-200x+80000,x∈[144,500]}\end{array}\right.$且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為200元,若該項(xiàng)目不獲利,國家將給予補(bǔ)償.
(1)當(dāng)x∈[200,300]時(shí),判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損?
(2)該項(xiàng)目每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知在等差數(shù)列{an}中,a4=7,a6=13,則a8=(  )
A.18B.19C.17D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知$\overrightarrow{a}$=(λ,2),$\overrightarrow$=(3,6),且$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角,則λ的取值范圍是λ>-4且λ≠1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)=$\left\{\begin{array}{l}(2b-1)•{3^x}-b,x>0\\-{x^2}+(2-b)x,x≤0\end{array}$在R上為增函數(shù),則實(shí)數(shù)b的取值范圍為( 。
A.$(\frac{1}{2},2]$B.[1,2]C.(1,2]D.$(\frac{1}{2},2)$

查看答案和解析>>

同步練習(xí)冊(cè)答案