16.已知向量$\overrightarrow a=(x-1,3),\overrightarrow b=(2,1)$,則$\overrightarrow a⊥\overrightarrow b$的充要條件是x=$-\frac{1}{2}$.

分析 $\overrightarrow a⊥\overrightarrow b$?$\overrightarrow{a}•\overrightarrow$=0,即可得出.

解答 解:$\overrightarrow a⊥\overrightarrow b$?$\overrightarrow{a}•\overrightarrow$=2(x-1)+3=0,解得x=-$\frac{1}{2}$.
故答案為:$-\frac{1}{2}$.

點(diǎn)評 本題考查了向量垂直的充要條件,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,橢圓C的參數(shù)方程為$\left\{\begin{array}{l}x=2cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù)),直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)).
(Ⅰ)寫出橢圓C的普通方程和直線l的傾斜角;
(Ⅱ)若點(diǎn)P(1,2),設(shè)直線l與橢圓C相交于A,B兩點(diǎn),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知m,n∈R,集合A={2,lgm},B={m,2n},若A∩B={1},則m+n=( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=λsinωx-cosωx(ω>0),其圖象的相鄰對稱軸之間的距離為$\frac{π}{2}$,且直線$x=\frac{π}{6}$是它的一條對稱軸.
(1)求實(shí)數(shù)λ的值;
(2)設(shè)函數(shù)$g(x)=f(x)+cos(2x-\frac{2π}{3})$,求g(x)在區(qū)間$[{-\frac{π}{3},\frac{π}{6}}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知圓C:x2+y2=9,分別按以下要求求出相應(yīng)概率:
(Ⅰ)若以連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m,n作為點(diǎn)P的坐標(biāo),求點(diǎn)P落在圓C外部的概率;
(Ⅱ)在不等式組$\left\{\begin{array}{l}{0≤x≤3}\\{0≤y≤3}\end{array}\right.$所確定的區(qū)域內(nèi)任意取一點(diǎn)P(x,y),求點(diǎn)P落在圓C內(nèi)部的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.集合{a,b,c}的子集的個數(shù)為(  )
A.4B.7C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=|x+2|-|x+a|為R上的奇函數(shù),則f(a)=4或0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列結(jié)論正確的個數(shù)為(  )
(1)若y=ln2,則y′=$\frac{1}{2}$           
(2)若y=$\sqrt{x}$,則y′=$\frac{1}{2\sqrt{x}}$
(3)若y=ex,則y’=ex
(4)若y=cosx,則y′=sinx.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.根據(jù)“2015年國民經(jīng)濟(jì)和社會發(fā)展統(tǒng)計(jì)公報”中公布的數(shù)據(jù),從2011 年到2015 年,我國的第三產(chǎn)業(yè)在GDP中的比重如下:
年份20112012201320142015
年份代碼x12345
第三產(chǎn)業(yè)比重(%)44.345.546.948.150.5
(Ⅰ)在所給坐標(biāo)系中作出數(shù)據(jù)對應(yīng)的散點(diǎn)圖;
(Ⅱ)建立第三產(chǎn)業(yè)在GDP中的比重y關(guān)于年份代碼x的回歸方程;
(Ⅲ)按照當(dāng)前的變化趨勢,預(yù)測2017 年我國第三產(chǎn)業(yè)在GDP中的比重.
附注:回歸直線方程$\widehaty=\widehata+\widehatbx$中的斜率和截距的最小二乘估計(jì)公式分別為:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$,$\sum_{i=1}^5{{x_i}{y_i}}=720.9$.

查看答案和解析>>

同步練習(xí)冊答案