12.已知函數(shù)f(x)=ex
(Ⅰ)當(dāng)x>-1時(shí),證明:f(x)>$\frac{(x+1)^{2}}{2}$;
(Ⅱ)當(dāng)x>0時(shí),f(1-x)+2lnx≤a(x-1)+1恒成立,求正實(shí)數(shù)a的值.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,證出結(jié)論即可;
(Ⅱ)問(wèn)題等價(jià)于e1-x+2lnx-a(x-1)-1≤0在(0,+∞)恒成立,令p(x)=e1-x+2lnx-a(x-1)-1,(x>0),根據(jù)函數(shù)的單調(diào)性求出a的值即可.

解答 解:(Ⅰ)證明:令g(x)=ex-$\frac{(x+1)^{2}}{2}$,(x>-1),
則g′(x)=ex-x-1(x>-1),
令h(x)=ex-x-1(x>-1),則h′(x)=ex-1,(x>-1),
令h′(x)>0,解得:x>0,令h′(x)<0,解得:x<0,
∴h(x)在(-1,0)遞減,在(0,+∞)遞增,
∴h(x)>h(0)=0,
∴g(x)在(-1,+∞)遞增,
∴g(x)>g(-1)=$\frac{1}{e}$>0,
即原命題成立;
(Ⅱ)當(dāng)x>0時(shí),f(1-x)+2lnx≤a(x-1)+1恒成立,
等價(jià)于e1-x+2lnx-a(x-1)-1≤0在(0,+∞)恒成立,
令p(x)=e1-x+2lnx-a(x-1)-1,(x>0),
則p′(x)=$\frac{2}{x}$-e1-x-a,(x>0),
令q(x)=$\frac{2}{x}$-e1-x-a,(x>0),
則q′(x)=-$\frac{2{(e}^{x-1}-\frac{{x}^{2}}{2})}{{{e}^{x-1}-x}^{2}}$,(x>0),
由(Ⅰ)得q′(x)<0,q(x)在(0,+∞)遞減,
①a=1時(shí),q(1)=p′(1)=0且p(1)=0,
在(0,1)上p′(x)>0,p(x)遞增,在(1,+∞)上,p′(x)<0,p(x)遞減,
故p(x)的最大值是p(1),即p(x)≤0恒成立;
②a>1時(shí),p′(1)<0,
x∈(0,1)時(shí),由p′(x)=$\frac{2}{x}$-e1-x-a<$\frac{2}{x}$-1-a<0,解得:$\frac{2}{a+1}$<x<1,
即x∈($\frac{2}{a+1}$,1)時(shí),p′(x)<0,p(x)遞減,
又p(1)=0,故p(x)>0與p(x)<0矛盾;
③0<a<1時(shí),由p′(x)=$\frac{2}{x}$-e1-x-a>$\frac{2}{x}$-1-a>0,解得:1<x<$\frac{2}{a+1}$,
即x∈(1,$\frac{2}{a+1}$)時(shí),p′(x)>0,p(x)遞增,
又p(1)=0,故此時(shí)p(x)>0與p(x)≤0恒成立矛盾,
綜上:a=1.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問(wèn)題,考查分類(lèi)討論思想、轉(zhuǎn)化思想,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.巧克力很甜、很好吃,數(shù)學(xué)很妙、很有趣,某中學(xué)統(tǒng)計(jì)了部分同學(xué)“愛(ài)吃巧克力”與“數(shù)學(xué)成績(jī)好”的關(guān)系,得到下表:
愛(ài)吃巧克力不愛(ài)吃巧克力合計(jì)
數(shù)學(xué)成績(jī)好25540
數(shù)學(xué)成績(jī)一般253560
合計(jì)5050100
經(jīng)計(jì)算得k≈4.167,由此可以判斷( 。
參考數(shù)據(jù):
P(K2≥k)0.10.050.0250.01
k2.7063.8415.0246.635
A.至少有99%的把握認(rèn)為“數(shù)學(xué)成績(jī)好”與“愛(ài)吃巧克力”有關(guān)
B.至少有95%的把握認(rèn)為“數(shù)學(xué)成績(jī)好”與“愛(ài)吃巧克力”有關(guān)
C.至少有99%的把握認(rèn)為“數(shù)學(xué)成績(jī)好”與“愛(ài)吃巧克力”無(wú)關(guān)
D.至少有95%的把握認(rèn)為“數(shù)學(xué)成績(jī)好”與“愛(ài)吃巧克力”無(wú)關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知變換T將一個(gè)圖形繞原點(diǎn)順時(shí)針旋轉(zhuǎn)60°,則該變換對(duì)應(yīng)的矩陣是$[\begin{array}{l}{\frac{1}{2}}&{\frac{\sqrt{3}}{2}}\\{-\frac{\sqrt{3}}{2}}&{\frac{1}{2}}\end{array}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=x-a-lnx(a∈R).
(1)若f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
(2)證明:若0<x1<x2,則lnx1-lnx2>1-$\frac{{x}_{2}}{{x}_{1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=ex-ax2-bx-1(a,b∈R,e為自然對(duì)數(shù)的底數(shù)).
(1)若對(duì)任意a∈[0,1],總存在x∈[1,2],使得f(x)≤0成立,求b的最小值;
(2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知平面直角坐標(biāo)系xOy,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,P點(diǎn)的極坐標(biāo)為(2$\sqrt{3}$,$\frac{π}{6}$),曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=2cosθ}\\{y=-\sqrt{3}+2sinθ}\end{array}}$(θ為參數(shù)).
(1)寫(xiě)出點(diǎn)P的直角坐標(biāo)及曲線C的直角坐標(biāo)方程;
(2)若Q為曲線C上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線l:ρcosθ+2ρsinθ+1=0的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.圓C與直線2x+y-5=0切于點(diǎn)(2,1),且與直線2x+y+15=0也相切,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.f(x)是一次函數(shù),且$\int_0^1{f(x)dx}$=5,$\int_0^1{xf(x)dx}=\frac{17}{6}$,那么f(x)的解析式是f(x)=4x+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)0<a<1,已知函數(shù)f(x)=$\left\{\begin{array}{l}cosπx,0<x≤a\\ 8{x^3},a<x≤1\end{array}$,若存在實(shí)數(shù)b使函數(shù)g(x)=f(x)-b有兩個(gè)零點(diǎn),則a的取值范圍是( 。
A.$({0,\frac{1}{4}})$B.$({0,\frac{1}{2}})$C.(0,1)D.$({\frac{1}{2},1})$

查看答案和解析>>

同步練習(xí)冊(cè)答案