9.擲一顆骰子,出現(xiàn)的結(jié)果有( 。
A.6種B.12種C.36種D.64種

分析 擲一顆骰子,出現(xiàn)的結(jié)果有1,2,3,4,5,6點,結(jié)果有6種,問題得以解決

解答 解:擲一顆骰子,出現(xiàn)的結(jié)果有1,2,3,4,5,6點,結(jié)果共有6種,
故選:A

點評 本題考查了基本事件的概念和列舉法基本事件,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知$\overrightarrow{OP}$=(2,1),$\overrightarrow{OA}$=(1,7),$\overrightarrow{OB}$=(5,1),設(shè)R是直線OP上的一點,其中O是坐標原點.
(Ⅰ)求使$\overrightarrow{RA}$$•\overrightarrow{RB}$取得最小值時$\overrightarrow{OR}$的坐標的坐標;
(Ⅱ)對于(1)中的點R,求$\overrightarrow{RA}$與$\overrightarrow{RB}$夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.為分析肥胖程度對總膽固醇與空腹血糖的影響,在肥胖人群中隨機抽出8人,他們的肥胖指數(shù)BMI值、總膽固醇TC指標(單位:mmol/L)、空腹血糖CLU指標值(單位:mmol/L)如表所示.
人員編號12345678
BMI值x2527303233354042
TC指標值y5.35.45.55.65.76.56.97.1
CLU指標值z6.77.27.38.08.18.69.09.1
(1)用變量y與x,z與x的相關(guān)系數(shù),分別說明TC指標值與BMI值、CLU指標值與BMI值的相關(guān)程度;
(2)求y與x的線性回歸方程,已知TC指標值超過5.2為總膽固醇偏高,據(jù)此模型分析當BMI值達到多大時,需要注意監(jiān)控總膽固醇偏高情況的出現(xiàn)(上述數(shù)據(jù)均要精確到0.01).
參考公式:相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
回歸直線y=$\stackrel{∧}$x+a,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$
參考數(shù)據(jù):$\overline{x}$=33,$\overline{y}$=6,$\overline{z}$=8,$\sum_{i=1}^{8}({x}_{i}-\overline{x})^{2}$≈244,$\sum_{i=1}^{8}({y}_{i}-\overline{y})^{2}$≈3.6,$\sum_{i=1}^{8}({z}_{i}-\overline{z})^{2}$≈5.4,$\sum_{i=1}^{8}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$≈28.3,$\sum_{i=1}^{8}({x}_{i}-\overline{x})({z}_{i}-\overline{z})$≈35.4,$\sqrt{244}$≈15.6,$\sqrt{3.6}$≈1.9,$\sqrt{5.4}$≈2.3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,平面ACEF⊥平面ABCD,四邊形ACEF是矩形,AF=a,點M在線段EF上.
(1)求證:BC⊥AM;
(2)若AM∥平面BDE,試求線段AM的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知4a=3,將log89-2${\;}^{lo{g}_{4}3}$用a的代數(shù)式表示為$\frac{4}{3}$a-2a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.求圓心在直線x-y-4=0上,且過兩圓x2+y2-4x-6=0和x2+y2-4y-6=0的交點的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知$\overrightarrow{u}$=(x,y),$\overrightarrow{v}$=(y,2y-x)的對應關(guān)系用$\overrightarrow{v}$=f($\overrightarrow{u}$)表示.
(1)證明對于任意向量$\overrightarrow{a}$,$\overrightarrow$及常數(shù)m、n,恒有f(m$\overrightarrow{a}$+n$\overrightarrow$)=mf($\overrightarrow{a}$)+nf($\overrightarrow$)成立.
(2)設(shè)$\overrightarrow{a}$=(-2,0),$\overrightarrow$=(cosα,sinβ),2cosβ-sinα=2,且f($\overrightarrow{a}$)•f($\overrightarrow$)=2,求α+β.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知(x+$\frac{1}{x}$)2n的展開式中所有系數(shù)之和比(3$\root{3}{x}$-x)n的展開式中所有系數(shù)之和大240.
(1)求(x+$\frac{1}{x}$)2n的展開式中中的常數(shù)項(用數(shù)字作答);
(2)求(2x-$\frac{1}{x}$)n的展開式的二項式系數(shù)之和(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.(1)已知數(shù)列{an}的前n項和Sn=(一1)n+1,求an
(2)數(shù)列{an}的前n項和Sn=3+2n,求an

查看答案和解析>>

同步練習冊答案