2.設(shè)A=$\frac{1}{2}$$(\begin{array}{l}{2}&{0}&{0}\\{0}&{1}&{3}\\{0}&{2}&{5}\end{array})$,求|A|,A-1,(A*-1

分析 由矩陣的運算性質(zhì)|A|=$(\frac{1}{2})^{3}$×2×(1×5-2×3),求得|A|,再求出A的轉(zhuǎn)置矩陣,由A-1=$\frac{1}{丨A丨}$×A*,求出,A-1,根據(jù)矩陣A*丨I進(jìn)行初等行變換即可求得(A*-1

解答 解:A=$\frac{1}{2}$$(\begin{array}{l}{2}&{0}&{0}\\{0}&{1}&{3}\\{0}&{2}&{5}\end{array})$,設(shè)B=$(\begin{array}{l}{2}&{0}&{0}\\{0}&{1}&{3}\\{0}&{2}&{5}\end{array})$,
|A|=$(\frac{1}{2})^{3}$×2×(1×5-2×3)=-$\frac{1}{4}$,
A11=($\frac{1}{2}$)2$|\begin{array}{l}{1}&{3}\\{2}&{5}\end{array}|$=-$\frac{1}{4}$,A12=-($\frac{1}{2}$)2$|\begin{array}{l}{0}&{3}\\{0}&{5}\end{array}|$=0,A13=($\frac{1}{2}$)2$|\begin{array}{l}{0}&{1}\\{0}&{2}\end{array}|$=0,
A21=-($\frac{1}{2}$)2$|\begin{array}{l}{0}&{0}\\{2}&{5}\end{array}|$=0,A22=($\frac{1}{2}$)2$|\begin{array}{l}{2}&{0}\\{0}&{5}\end{array}|$=$\frac{5}{2}$,A23=-($\frac{1}{2}$)2$|\begin{array}{l}{2}&{0}\\{0}&{2}\end{array}|$=-1,
A31=($\frac{1}{2}$)2$|\begin{array}{l}{0}&{0}\\{1}&{3}\end{array}|$=0,A32=-($\frac{1}{2}$)2$|\begin{array}{l}{2}&{0}\\{0}&{3}\end{array}|$=-$\frac{3}{2}$,A33=($\frac{1}{2}$)2$|\begin{array}{l}{2}&{0}\\{0}&{1}\end{array}|$=$\frac{1}{2}$,
∴A*=$[\begin{array}{l}{-\frac{1}{4}}&{0}&{0}\\{0}&{\frac{5}{2}}&{-\frac{3}{2}}\\{0}&{-1}&{\frac{1}{2}}\end{array}]$,
∴A-1=$\frac{1}{丨A丨}$×A*=-4×$[\begin{array}{l}{-\frac{1}{4}}&{0}&{0}\\{0}&{\frac{5}{2}}&{-\frac{3}{2}}\\{0}&{-1}&{\frac{1}{2}}\end{array}]$=$[\begin{array}{l}{1}&{0}&{0}\\{0}&{-10}&{6}\\{0}&{4}&{-2}\end{array}]$,
∵(A*丨I)=$[\begin{array}{l}{\frac{1}{4}}&{0}&{0}&{1}&{0}&{0}\\{0}&{\frac{5}{2}}&{\frac{3}{2}}&{0}&{1}&{0}\\{0}&{-1}&{\frac{1}{2}}&{0}&{0}&{1}\end{array}]$→$[\begin{array}{l}{1}&{0}&{0}&{-4}&{0}&{0}\\{0}&{1}&{\frac{3}{5}}&{0}&{\frac{2}{5}}&{0}\\{0}&{0}&{\frac{1}{10}}&{0}&{\frac{2}{5}}&{1}\end{array}]$→$[\begin{array}{l}{1}&{0}&{0}&{-4}&{0}&{0}\\{0}&{1}&{0}&{0}&{-2}&{-6}\\{0}&{0}&{1}&{0}&{-4}&{-10}\end{array}]$,
∴(A*-1=$[\begin{array}{l}{-4}&{0}&{0}\\{0}&{-2}&{-6}\\{0}&{-4}&{-10}\end{array}]$.

點評 本題考查逆變換及逆矩陣,考查求|A|,轉(zhuǎn)置矩陣及逆矩陣的方法,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,正方體ABCD-A′B′C′D′的棱C′D′上有-點P,當(dāng)點B到平面PAA′距離最小時,tan∠PAD=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.垂直于直線2x+y-1=0且平分圓:x2+y2+x-2y=0周長的直線l的方程為( 。
A.x-2y+3=0B.2x-y+3=0C.2x-4y+5=0D.2x+y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知 AC,BD是圓x2+y2=4的互相垂直的兩條弦,垂足為M(1,$\sqrt{2}}$),則四邊形ABCD面積的最大值為M,最小值為N,則M-N的值為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在半徑為2的圓內(nèi),作內(nèi)接等腰三角形,當(dāng)?shù)走吷系母邽?時,它的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,ABCD是直角梯形,AB∥CD,BC⊥CD,CF⊥平面ABCD,DE∥CF,AD⊥DB.
(1)求證:BD⊥AE.
(2)若DE=1,CB=CD=CF=2,求二面角E-BD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,在圓錐PO中,已知PO=$\sqrt{2}$,⊙O的直徑AB=2,C是$\widehat{AB}$的中點,則二面角B-PA-C的余弦值為( 。
A.$\frac{\sqrt{10}}{10}$B.$\frac{\sqrt{10}}{5}$C.$\frac{\sqrt{15}}{5}$D.$\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ex-kx.
(1)若k>0,且對于任意x∈[0,+∞),f(x)>0恒成立,試確定實數(shù)k的取值范圍;
(2)設(shè)函數(shù)F(x)=f(x)+f(-x),
     求證:lnF(1)+lnF(2)+…+lnF(n)>$\frac{n}{2}ln$(en+1+2).(n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在極坐標(biāo)系中,已知點A(4,1),B(3,1+$\frac{π}{2}$),則線段AB的長度|AB|=5.

查看答案和解析>>

同步練習(xí)冊答案