已知二次函數(shù)f(x)=4x2-2(p-2)x-2p2-p+1
(1)若f(0)>0,求實(shí)數(shù)p的取值范圍
(2)在區(qū)間[-1,1]內(nèi)至少存在一個(gè)實(shí)數(shù)c,使f(c)>0,求實(shí)數(shù)p的取值范圍.
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由f(0)>0得不等式,解出即可,
(2)由于二次函數(shù)f(x)=4x2-2(p-2)x-2p2-p+1的圖象是開(kāi)口方向朝上的拋物線,故二次函數(shù)f(x)=4x2-2(p-2)x-2p2-p+1在區(qū)間
[-1,1]內(nèi)至少存在一個(gè)實(shí)數(shù)c,使f(c)>0的否定為對(duì)于區(qū)間[-1,1]內(nèi)的任意一個(gè)x都有f(x)≤0,即f(-1),f(1)均小于等0,由此可以構(gòu)造一個(gè)關(guān)于p的不等式組,解不等式組即可求出實(shí)數(shù)p的取值范圍.
解答: 解:(1)由f(0)>0,
得:-2p2-p+1>,
解得:-1<p<
1
2
,
(2)解:二次函數(shù)f(x)在區(qū)間[-1,1]內(nèi)至少存在一個(gè)實(shí)數(shù)c,
使f(c)>0的否定是:
對(duì)于區(qū)間[-1,1]內(nèi)的任意一個(gè)x都有f(x)≤0,
f(1)≤0
f(-1)≤0
4-2(p-2)-2p2-p+1≤0
4+2(p-2)-2p2-p+1≤0
,
整理得
2p2+3p-9≥0
2p2-p-1≥0
,解得p≥
3
2
,或p≤-3,
∴二次函數(shù)在區(qū)間[-1,1]內(nèi)至少存在一個(gè)實(shí)數(shù)c,
使f(c)>0的實(shí)數(shù)p的取值范圍是(-3,
3
2
).
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是一元二次方程的根的分布與系數(shù)的關(guān)系,其中根據(jù)二次函數(shù)的圖象是開(kāi)口方向朝上的拋物線,得到對(duì)于區(qū)間[-1,1]內(nèi)的任意一個(gè)x都有f(x)≤0時(shí),
f(1)≤0
f(-1)≤0
是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)比較
5
+
7
2
6
的大小并證明;
(Ⅱ)已知a,b為正實(shí)數(shù),求證:a3+b3≥a2b+ab2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)z=
m2-m-6
m+3
+(m2-2m-15)i,當(dāng)實(shí)數(shù)m為何值時(shí),(1)z為實(shí)數(shù)?(2)z為純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為調(diào)查某地區(qū)大學(xué)生是否愛(ài)好某項(xiàng)體育運(yùn)動(dòng),用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)的大學(xué)里調(diào)查了500位大學(xué)生,結(jié)果如下:
愛(ài)好4030
不愛(ài)好160270
(1)估計(jì)該地區(qū)大學(xué)生中,愛(ài)好該項(xiàng)運(yùn)動(dòng)的大學(xué)生的比例;
(2)能否有99%的把握認(rèn)為該地區(qū)的大學(xué)生是否愛(ài)好該項(xiàng)體育運(yùn)動(dòng)與性別有關(guān)?
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k)0.0500.0100.001
k3.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一次單元測(cè)試由20個(gè)選擇題構(gòu)成,每個(gè)選擇題有4個(gè)選項(xiàng),其中僅有一個(gè)選項(xiàng)正確,每題選對(duì)得5分,不選或選錯(cuò)不得分,滿分得100分.學(xué)生甲選對(duì)任意一題的概率為0.9,學(xué)生乙則在測(cè)試中對(duì)每題都從各選項(xiàng)中隨機(jī)地選擇一個(gè),分別求學(xué)生甲和學(xué)生乙在這次測(cè)試中成績(jī)的均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知對(duì)任意n∈N*,點(diǎn)(n,Sn)在二次函數(shù)f(x)=x2+x圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=
1
Sn
,n∈N*,求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對(duì)滿足n>m的一切正整數(shù)n,不等式2Sn-4200>
a
2
n
2
恒成立,求這樣的正整數(shù)m共有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)對(duì)于任意實(shí)數(shù)x,不等式|x-1|+|x-2|≥m恒成立.
(1)求m的取值范圍;
(2)當(dāng)m取最大值時(shí),解關(guān)于x的不等式|x+1|-2x≤
m
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin(x+
π
6
)的對(duì)稱軸方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩平行線3x-4y-1=0與直線3x-4y+2=0之間的距離d=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案