x | -$\sqrt{2}$ | 2 | $\sqrt{6}$ | 9 |
y | $\sqrt{3}$ | -$\sqrt{2}$ | -1 | 3 |
分析 (1)設(shè)拋物線C2:y2=2px(p≠0),則有$\frac{{y}^{2}}{x}$=2p,據(jù)此驗(yàn)證(2,-$\sqrt{2}$)、(9,3)在拋物線上,易求C2:y2=x,設(shè)C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,a>b>0,把點(diǎn)(-$\sqrt{2}$,$\sqrt{3}$),($\sqrt{6}$,-1)代入方程,能夠求出C1方程.
(2)討論直線AB的斜率為0,不為0,設(shè)出A,B,P,F(xiàn)的坐標(biāo),由直線的斜率公式,聯(lián)立橢圓方程,消去x,得到含y的方程,運(yùn)用韋達(dá)定理和斜率公式,化簡(jiǎn)整理,結(jié)合等差數(shù)列的性質(zhì),即可得證.
解答 解:(1)設(shè)拋物線C2:y2=2px(p≠0),則有$\frac{{y}^{2}}{x}$=2p,
據(jù)此驗(yàn)證4個(gè)點(diǎn)中知(2,-$\sqrt{2}$)、(9,3)在拋物線上,
易求C2:y2=x;
設(shè)C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,a>b>0,
把點(diǎn)(-$\sqrt{2}$,$\sqrt{3}$),($\sqrt{6}$,-1)代入得:$\left\{\begin{array}{l}{\frac{2}{{a}^{2}}+\frac{3}{^{2}}=1}\\{\frac{6}{{a}^{2}}+\frac{1}{^{2}}=1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{a}^{2}=8}\\{^{2}=4}\end{array}\right.$,
∴C1方程為$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1;
(2)證明:當(dāng)直線AB的斜率為0,
則A(-2$\sqrt{2}$,0),B(2$\sqrt{2}$,0),F(xiàn)(2,0),
設(shè)P(4,t),則kPA+kPB=$\frac{t}{4+2\sqrt{2}}$+$\frac{t}{4-2\sqrt{2}}$=t,
kPF=$\frac{t}{4-2}$=$\frac{1}{2}$t,
則kPA+kPB=2kPF,即直線PA,PF,PB的斜率成等差數(shù)列.
當(dāng)直線AB的斜率不為0,設(shè)AB的方程為x=my+2,
A(x1,y1),B(x2,y2),F(xiàn)(2,0),P(4,t),
代入橢圓方程x2+2y2=8,
可得(2+m2)y2+4my-4=0,y1+y2=-$\frac{4m}{2+{m}^{2}}$,y1y2=$\frac{-4}{2+{m}^{2}}$,
則kPA+kPB=$\frac{t-{y}_{1}}{4-{x}_{1}}$+$\frac{t-{y}_{2}}{4-{x}_{2}}$=$\frac{t-{y}_{1}}{2-m{y}_{1}}$+$\frac{t-{y}_{2}}{2-m{y}_{2}}$=$\frac{4t-(2+mt)({y}_{1}+{y}_{2})+2m{y}_{1}{y}_{2}}{4+{m}^{2}{y}_{1}{y}_{2}-2m({y}_{1}+{y}_{2})}$
=$\frac{4t-(2+mt)•\frac{-4m}{2+{m}^{2}}+2m•\frac{-4}{2+{m}^{2}}}{4+{m}^{2}•\frac{-4}{2+{m}^{2}}-2m•\frac{-4m}{2+{m}^{2}}}$=t,
kPF=$\frac{t}{4-2}$=$\frac{1}{2}$t,
則有kPA+kPB=2kPF,即直線PA,PF,PB的斜率成等差數(shù)列.
故直線PA,PF,PB的斜率成等差數(shù)列.
點(diǎn)評(píng) 本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法、直線的斜率公式和等差數(shù)列的性質(zhì)及直線與橢圓的相關(guān)知識(shí),解題時(shí)要注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,+∞) | B. | (-∞,1) | C. | [1,+∞) | D. | (1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p假q真 | B. | p真q假 | C. | p假q假 | D. | p真q真 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 重心 | B. | 外心 | C. | 內(nèi)心 | D. | 垂心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com