分析 根據(jù)韋達(dá)定理可得lgm+lgn=3,lgm•lgn=1,根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),可得(lg$\frac{m}{n}$)2的值.
解答 解:∵lgm,lgn是方程x2-3x+1=0的兩根,
∴l(xiāng)gm+lgn=3,lgm•lgn=1,
故(lg$\frac{m}{n}$)2=(lgm-lgn)2=(lgm+lgn)2-4lgm•lgn=5,
故答案為:5.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次方程根與系數(shù)的關(guān)系(韋達(dá)定理),對(duì)數(shù)的運(yùn)算性質(zhì),難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (一2,-1) | B. | (1,2) | C. | (一1,+∞) | D. | (-ln2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ±$\frac{4}{3}$ | B. | $\frac{4}{3}$ | C. | $±\frac{4}{9}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | -$\sqrt{5}$ | C. | ±$\sqrt{5}$ | D. | ±3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com