分析 連結(jié)CD、OD,由圓的性質(zhì)與等腰三角形的性質(zhì),證出CD∥AB且AC∥DO,得到四邊形ACDO為平行四邊形,再根據(jù)題設(shè)條件即可得到用表示向量的式子.
解答 解:如圖示:
連結(jié)CD、OD,
∵點(diǎn)C、D是半圓弧AB的兩個(gè)三等分點(diǎn),
∴$\widehat{AC}$=$\widehat{BD}$,可得CD∥AB,∠CAD=∠DAB=$\frac{1}{3}$×90°=30°,
∵OA=OD,
∴∠ADO=∠DAO=30°,
由此可得∠CAD=∠DAO=30°,
∴AC∥DO.
∴四邊形ACDO為平行四邊形,
∴$\overrightarrow{AD}$=$\overrightarrow{AO}$+$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow$,
故答案為:$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow$.
點(diǎn)評(píng) 本題給出半圓弧的三等分點(diǎn),求向量的線性表示式.著重考查了圓周角定理、平行四邊形的判定與向量的線性運(yùn)算等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
每臺(tái)甲型收割機(jī)的租金 | 每臺(tái)乙型收割機(jī)的租金 | |
A地區(qū) | 1800元 | 1600元 |
B地區(qū) | 1600元 | 1200元 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -32 | B. | 32 | C. | -8 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | |z1|<|z2| | B. | |z1|=|z2| | C. | |z1|>|z2| | D. | 無(wú)法比較 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com