14.化簡$\frac{si{n}^{3}θ+co{s}^{3}θ}{sinθ+cosθ}$的結(jié)果是1-$\frac{1}{2}$sin2θ.

分析 根據(jù)立方和公式a3+b3=(a+b)(a2-ab+b2)以及同角的三角形函數(shù)的關(guān)系,化簡即可.

解答 解:$\frac{si{n}^{3}θ+co{s}^{3}θ}{sinθ+cosθ}$=sin2θ+cos2θ-sinθcosθ=1-$\frac{1}{2}$sin2θ,
故答案為:1-$\frac{1}{2}$sin2θ.

點(diǎn)評 本題考查了同角的三角函數(shù)的關(guān)系以及二倍角公式和立方和公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)向量$\overrightarrow{AB}$=(1,m),$\overrightarrow{BC}$=(2m,-1),其中m∈[-1,+∞),則$\overrightarrow{AB}$•$\overrightarrow{AC}$的最小值為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在公差為d的等差數(shù)列{an}中,已知a1=10,且a1,a2+1,a3+2成等比數(shù)列
(I)求d,an;
(Ⅱ)求|a1|+|a2|+|a3|+…+|an|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,AB是⊙O的直徑,點(diǎn)C,D是半圓弧AB的三等分點(diǎn),若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,則$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow$.(用a,b表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)f(x)=$\frac{2{x}^{2}}{{e}^{x}}$+$\frac{mx}{{e}^{x}}$,m∈R.
(1)若f(x)在x=0處取得極值,確定m的值,并求此時曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)若f(x)在[2,+∞)上為減函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.向量$\overrightarrow{a}$=(4,-3),$\overrightarrow$=(0,5),則$\overrightarrow{a}$與$\overrightarrow$夾角平分線上的單位向量是( 。
A.(2,1)B.(1,2)
C.($\frac{\sqrt{5}}{5}$,$\frac{2\sqrt{5}}{5}$)或(-$\frac{\sqrt{5}}{5}$,-$\frac{2\sqrt{5}}{5}$)D.($\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$)或(-$\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=m+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos2θ+3ρ2sin2θ=12,且曲線C的左焦點(diǎn)F在直線l上.
(Ⅰ)若直線l與曲線C交于A、B兩點(diǎn).求|FA|•|FB|的值;
(Ⅱ)設(shè)曲線C的內(nèi)接矩形的周長為P,求P的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知log63=a,則log612=2-a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知各項均為正數(shù)的數(shù)列{an}滿足an+1=$\frac{1}{2}$an+$\frac{1}{4}$,a1=$\frac{7}{2}$,Sn為數(shù)列{an}的前n項和,若對于任意的n∈N*,不等式$\frac{4k}{12+n-2{S}_{n}}$≥1恒成立,則實(shí)數(shù)k的取值范圍為$k≥\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊答案