8.已知cos(α+$\frac{π}{4}$)=$\frac{2}{3}$,求sin($\frac{π}{4}$-α)的值$\frac{2}{3}$.

分析 原式中的角度變形后,利用誘導(dǎo)公式化簡(jiǎn),將已知等式代入計(jì)算即可求出值.

解答 解:∵cos(α+$\frac{π}{4}$)=$\frac{2}{3}$,
∴sin($\frac{π}{4}$-α)=sin[$\frac{π}{2}$-(α+$\frac{π}{4}$)]=cos(α+$\frac{π}{4}$)=$\frac{2}{3}$,
故答案為:$\frac{2}{3}$

點(diǎn)評(píng) 此題考查了運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知平面向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow$|=2,$\overrightarrow$⊥(2$\overrightarrow{a}$-$\overrightarrow$),求|t$\overrightarrow$+(1-2t)$\overrightarrow{a}$|(t∈R)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知某種動(dòng)物服用某種藥物一次后當(dāng)天出現(xiàn)A癥狀的概率為$\frac{1}{3}$.為了研究連續(xù)服用該藥物后出現(xiàn)A癥狀的情況,做藥物試驗(yàn).試驗(yàn)設(shè)計(jì)為每天用藥一次,連續(xù)用藥四天為一個(gè)用藥周期.假設(shè)每次用藥后當(dāng)天是否出現(xiàn)A癥狀的出現(xiàn)與上次用藥無(wú)關(guān).
(Ⅰ)如果出現(xiàn)A癥狀即停止試驗(yàn)”,求試驗(yàn)至多持續(xù)一個(gè)用藥周期的概率;
(Ⅱ)如果在一個(gè)用藥周期內(nèi)出現(xiàn)3次或4次A癥狀,則這個(gè)用藥周期結(jié)束后終止試驗(yàn),試驗(yàn)至多持續(xù)兩個(gè)周期.設(shè)藥物試驗(yàn)持續(xù)的用藥周期數(shù)為η,求η的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.從集合{0,2,4,6,8}中隨機(jī)取一個(gè)數(shù)m,從集合{0,4,8}中隨機(jī)取一個(gè)數(shù)n,則“事件m≤n”發(fā)生的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.近年來(lái)空氣污染是一個(gè)生活中重要的話題,PM2.5就是其中一個(gè)重要指標(biāo).各省、市、縣均要進(jìn)行實(shí)時(shí)監(jiān)測(cè),某市2015年11月的PM2.5濃度統(tǒng)計(jì)如圖所示.
日期PM2.5濃度日期PM2.5濃度日期PM2.5濃度
11-1 13711-1114411-2140
11-214311-1216611-2242
11-314511-1319711-2335
11-419311-1419411-2453
11-513311-1521911-2588
11-62211-164111-2629
11-72211-179011-27199
11-85711-184611-28287
11-911111-198011-29291
11-1013411-206711-30452
(1)請(qǐng)完成頻率分布表;
空氣質(zhì)量指數(shù)類別PM2.5 24小時(shí)濃度均值頻數(shù)頻率
優(yōu)0-354 $\frac{2}{15}$
36-757 $\frac{7}{30}$
輕度污染76-1154 
中度污染116-1506 
重度污染151-250  
嚴(yán)重污染251-500  
合計(jì)/301
(2)專家建議,空氣質(zhì)量為優(yōu)、良、輕度污染時(shí)可正常進(jìn)行戶外活動(dòng),中度污染及以上時(shí),取消一切戶外活動(dòng),在2015年11月份,該市某學(xué)校進(jìn)行了連續(xù)兩天的戶外拔河比賽,求拔河比賽能正常進(jìn)行的概率.
(3)PM2.5濃度在75以上,空氣質(zhì)量為超標(biāo),陶先生在2015年11月份期間曾有兩天經(jīng)過(guò)該市,記ξ表示兩天中PM2.5檢測(cè)數(shù)據(jù)超標(biāo)的天數(shù),求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),函數(shù)f(x)=2x-1
(Ⅰ)求當(dāng)x<0時(shí),f(x)的解析式;
(Ⅱ)若f(a)≤3,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知等比數(shù)列{an}的首項(xiàng)為1,公比為q(0<q≤1),它的前n項(xiàng)和為Sn,且Tn=$\frac{{S}_{n}}{{S}_{n+1}}$,求$\underset{lim}{n→∞}$Tn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=x2+ax+4
(Ⅰ)當(dāng)a=-5時(shí),解不等式f(x)>0;
(Ⅱ)若不等式f(x)>0的解集為R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,體積為$\frac{3\sqrt{3}}{2}$,底面是邊長(zhǎng)為$\sqrt{3}$的正三角形,則三棱柱ABC-A1B1C1的外接球體積為$\frac{8\sqrt{2}}{3}$π.

查看答案和解析>>

同步練習(xí)冊(cè)答案