19.已知|$\overrightarrow{a}$|=3,|$\overrightarrow$|=5,|$\overrightarrow{a}$+$\overrightarrow$|=7.
(1)求向量$\overrightarrow{a}$與$\overrightarrow$的夾角θ;
(2)當(dāng)向量k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$垂直時(shí),求實(shí)數(shù)k的值.

分析 (1)對(duì)模兩邊平方,利用兩個(gè)向量的數(shù)量積的定義解得cosθ=$\frac{1}{2}$,即可求出θ的度數(shù);
(2)根據(jù)向量垂直,其數(shù)量積為0,即可求出k的值.

解答 解:(1)∵|$\overrightarrow{a}$|=3,|$\overrightarrow$|=5,|$\overrightarrow{a}$+$\overrightarrow$|=7,
∴|$\overrightarrow{a}$+$\overrightarrow$|2=($\overrightarrow{a}$)2+($\overrightarrow$)2+2$\overrightarrow{a}•\overrightarrow$=|$\overrightarrow{a}$|2+|$\overrightarrow$|2+2|$\overrightarrow{a}$||$\overrightarrow$|cosθ=9+25+30cosθ=47,
∴cosθ=$\frac{1}{2}$
∵0°≤θ≤180°,
∴θ=60°;
(2)∵向量k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$垂直,
∴(k$\overrightarrow{a}$+$\overrightarrow$)($\overrightarrow{a}$-2$\overrightarrow$)=0,
∴k|$\overrightarrow{a}$|2-2|$\overrightarrow$|2+(1-2k)|$\overrightarrow{a}$||$\overrightarrow$|cosθ=0,
即9k-50+(1-2k)×3×5×$\frac{1}{2}$=0,
解得k=-$\frac{85}{12}$.

點(diǎn)評(píng) 本題主要考查兩個(gè)向量的數(shù)量積的定義,兩個(gè)向量數(shù)量積的運(yùn)算,向量的垂直的條件,根據(jù)三角函數(shù)的值求角,屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,$\overrightarrow{AB}$=m$\overrightarrow{AD}$+n$\overrightarrow{AC}$,則mn=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知F1,F(xiàn)2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$(a,b>0)的左、右焦點(diǎn),B點(diǎn)坐標(biāo)為(0,$\frac{2}$),直線F1B與雙曲線C的兩條漸近線分別交于P,Q兩點(diǎn),且PQ的中點(diǎn)N的橫坐標(biāo)為$\frac{c}{4}$,則雙曲線C的離心率為$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow$=(9,12),$\overrightarrow{c}$=(4,-3),若向量$\overrightarrow{m}$=2$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{n}$=$\overrightarrow{a}$+$\overrightarrow{c}$,則向量$\overrightarrow{m}$與$\overrightarrow{n}$的夾角為( 。
A.45°B.60°C.120°D.135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知cos($\frac{7π}{8}$-α)=$\frac{1}{5}$,則cos($\frac{π}{8}$+α)=-$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.一個(gè)幾何體的三視圖如圖所示,其中正視圖與側(cè)視圖都是斜邊長(zhǎng)為2的直角三角形,俯視圖是半徑為1的$\frac{1}{4}$圓周和兩條半徑,則這個(gè)幾何體的體積為(  )
A.$\frac{\sqrt{3}}{12}$πB.$\frac{\sqrt{3}}{6}$πC.$\frac{\sqrt{3}}{4}$πD.$\frac{\sqrt{3}}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求和12-22+32-42+…+(-1)n+1n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且A=$\frac{2π}{3}$,b+2c=8,則當(dāng)△ABC的面積取得最大值時(shí)a的值為( 。
A.2$\sqrt{6}$B.2$\sqrt{7}$C.$\sqrt{14}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在《九章算術(shù)》方田章圓田術(shù)(劉徽注)中指出:,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣.”注述中所用的割圓術(shù)是一種無限與有限的轉(zhuǎn)化過程,比如在$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$中“…”即代表無限次重復(fù),但原式卻是個(gè)定值x,這可以通過方程$\sqrt{2+x}$確定出來x=2,類似地不難得到1+$\frac{1}{1+\frac{1}{1+…}}$=$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案