分析 先利用展開式中只有第四項(xiàng)的二項(xiàng)式系數(shù)最大求出n=6,再求出其通項(xiàng)公式,求出r=0,2,4,6時(shí),為有理項(xiàng),即可求出概率.
解答 解:因?yàn)槎?xiàng)式(x+$\frac{1}{\sqrt{x}}$)n展開式中只有第四項(xiàng)的系數(shù)最大,
所以n=6.
所以其通項(xiàng)為Tr+1=${C}_{6}^{r}{x}^{6-\frac{3}{2}r}$
所以r=0,2,4,6時(shí),為有理項(xiàng),
所以所求概率為$\frac{4}{7}$,
故答案為:$\frac{4}{7}$.
點(diǎn)評 本題主要考查二項(xiàng)式定理中的常用結(jié)論:如果n為奇數(shù),那么是正中間兩項(xiàng)的二項(xiàng)式系數(shù)最大;如果n為偶數(shù),那么是正中間一項(xiàng)的二項(xiàng)式系數(shù)最大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{36}$ | B. | $\frac{1}{6}$ | C. | $\frac{2}{15}$ | D. | $\frac{1}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1] | B. | [-1,1] | C. | [-$\frac{1}{2}$,1] | D. | [-$\frac{1}{4}$,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com