5.如圖,三棱錐A-BCD中,AB=AC=BD=CD=3,AD=BC=2,點M,N分別是AD,BC的中點,則異面直線AN,CM所成的角的余弦值是$\frac{7}{8}$.

分析 連結(jié)ND,取ND 的中點為:E,連結(jié)ME說明異面直線AN,CM所成的角就是∠EMC通過解三角形,求解即可.

解答 解:連結(jié)ND,取ND 的中點為:E,連結(jié)ME,則ME∥AN,異面直線AN,CM所成的角就是∠EMC,
∵AN=2$\sqrt{2}$,
∴ME=$\sqrt{2}$=EN,MC=2$\sqrt{2}$,
又∵EN⊥NC,∴EC=$\sqrt{{EN}^{2}+{NC}^{2}}$=$\sqrt{3}$,
∴cos∠EMC=$\frac{{EM}^{2}+{MC}^{2}-{EC}^{2}}{2EM•MC}$=$\frac{2+8-3}{2×\sqrt{2}×2\sqrt{2}}$=$\frac{7}{8}$.
故答案為:$\frac{7}{8}$.

點評 本題考查異面直線所成角的求法,考查空間想象能力以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=1,AD=2,E是AD的中點,O是AC與BE的交點,將ABE沿BE折起到A1BE的位置,如圖2.
(Ⅰ)證明:CD⊥平面A1OC;
(Ⅱ)若平面A1BE⊥平面BCDE,求平面A1BC與平面A1CD夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某公司為了解用戶對其產(chǎn)品的滿意度,從A,B兩地區(qū)分別隨機調(diào)查了40個用戶,根據(jù)用戶對產(chǎn)品的滿意度評分,得到A地區(qū)用戶滿意度評分的頻率分布直方圖和B地區(qū)用戶滿意度評分的頻數(shù)分布表

B地區(qū)用戶滿意度評分的頻數(shù)分布表
滿意度評分分組[50,60)[60,70)[70,80)[80,90)[90,100)
頻數(shù)2814106
(1)做出B地區(qū)用戶滿意度評分的頻率分布直方圖,并通過直方圖比較兩地區(qū)滿意度評分的平均值及分散程度(不要求計算出具體值,給出結(jié)論即可)
(Ⅱ)根據(jù)用戶滿意度評分,將用戶的滿意度從低到高分為三個不等級:
滿意度評分低于70分70分到89分不低于90分
滿意度等級不滿意滿意非常滿意
估計哪個地區(qū)用戶的滿意度等級為不滿意的概率大?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}滿足an+2=qan(q為實數(shù),且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差數(shù)列
(1)求q的值和{an}的通項公式;
(2)設(shè)bn=$\frac{{{{log}_2}{a_{2n}}}}{{{a_{2n-1}}}}$,n∈N*,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,已知△ABC,D是AB的中點,沿直線CD將△ACD折成△A′CD,所成二面角A′-CD-B的平面角為α,則( 。
A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在等差數(shù)列{an}中,若a2=4,a4=2,則a6=( 。
A.-1B.0C.1D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知關(guān)于x的不等式|x+a|<b的解集為{x|2<x<4}
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)求$\sqrt{at+12}$+$\sqrt{bt}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某市A、B兩所中學(xué)的學(xué)生組隊參加辯論賽,A中學(xué)推薦了3名男生、2名女生,B中學(xué)推薦了3名男生、4名女生,兩校所推薦的學(xué)生一起參加集訓(xùn).由于集訓(xùn)后隊員水平相當(dāng),從參加集訓(xùn)的男生中隨機抽取3人,女生中隨機抽取3人組成代表隊.
(Ⅰ)求A中學(xué)至少有1名學(xué)生入選代表隊的概率;
(Ⅱ)某場比賽前,從代表隊的6名隊員中隨機抽取4人參賽,設(shè)X表示參賽的男生人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在平面四邊形ABCD中,∠A=∠B=∠C=75°.BC=2,則AB的取值范圍是($\sqrt{6}$-$\sqrt{2}$,$\sqrt{6}$+$\sqrt{2}$).

查看答案和解析>>

同步練習(xí)冊答案