10.在等差數(shù)列{an}中,若a2=4,a4=2,則a6=( 。
A.-1B.0C.1D.6

分析 直接利用等差中項求解即可.

解答 解:在等差數(shù)列{an}中,若a2=4,a4=2,則a4=$\frac{1}{2}$(a2+a6)=$\frac{1}{2}(4+{a}_{6})$=2,
解得a6=0.
故選:B.

點(diǎn)評 本題考查等差數(shù)列的性質(zhì),等差中項個數(shù)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知M(x0,y0)是雙曲線C:$\frac{{x}^{2}}{2}-{y}^{2}$=1上的一點(diǎn),F(xiàn)1,F(xiàn)2是C的左、右兩個焦點(diǎn),若$\overrightarrow{M{F}_{1}}•\overrightarrow{M{F}_{2}}$<0,則y0的取值范圍是( 。
A.$(-\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3})$B.$(-\frac{\sqrt{3}}{6},\frac{\sqrt{3}}{6})$C.$(-\frac{2\sqrt{2}}{3},\frac{2\sqrt{2}}{3})$D.$(-\frac{2\sqrt{3}}{3},\frac{2\sqrt{3}}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}x+2≥0\\ x-y+3≥0\\ 2x+y-3≤0\end{array}\right.$,則目標(biāo)函數(shù)z=x+6y的最大值為( 。
A.3B.4C.18D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,設(shè)拋物線y2=4x的焦點(diǎn)為F,不經(jīng)過焦點(diǎn)的直線上有三個不同的點(diǎn)A,B,C,其中點(diǎn)A,B在拋物線上,點(diǎn)C在y軸上,則△BCF與△ACF的面積之比是( 。
A.$\frac{{|{BF}|-1}}{{|{AF}|-1}}$B.$\frac{{{{|{BF}|}^2}-1}}{{{{|{AF}|}^2}-1}}$C.$\frac{{|{BF}|+1}}{{|{AF}|+1}}$D.$\frac{{{{|{BF}|}^2}+1}}{{{{|{AF}|}^2}+1}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,三棱錐A-BCD中,AB=AC=BD=CD=3,AD=BC=2,點(diǎn)M,N分別是AD,BC的中點(diǎn),則異面直線AN,CM所成的角的余弦值是$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,AB切⊙O于點(diǎn)B,直線AO交⊙O于D,E兩點(diǎn),BC⊥DE,垂足為C.
(Ⅰ)證明:∠CBD=∠DBA;
(Ⅱ)若AD=3DC,BC=$\sqrt{2}$,求⊙O的直徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=|x2-a|(a∈R)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)如果存在實數(shù)m,n(m<n)是函數(shù)f(x)在[m,n]上的值域為[m,n],則稱區(qū)間[m,n]是函數(shù)f(x)的和諧區(qū)間,設(shè)a>0,若函數(shù)f(x)恰好有兩個和諧區(qū)間,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,已知AB=2,AC=3,A=60°.
(1)求BC的長;
(2)求sin2C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.f(x)=2sin xsin(x+$\frac{π}{2}$)-x2的零點(diǎn)個數(shù)為2.

查看答案和解析>>

同步練習(xí)冊答案