【題目】已知拋物線(xiàn)(),過(guò)點(diǎn)()的直線(xiàn)與交于、兩點(diǎn).
(1)若,求證:是定值(是坐標(biāo)原點(diǎn));
(2)若(是確定的常數(shù)),求證:直線(xiàn)過(guò)定點(diǎn),并求出此定點(diǎn)坐標(biāo);
(3)若的斜率為1,且,求的取值范圍.
【答案】(1)定值為,證明見(jiàn)解析;(2)證明見(jiàn)解析;定點(diǎn);(3).
【解析】
(1)a時(shí),設(shè)過(guò)點(diǎn)M的直線(xiàn)l為x=ty,與拋物線(xiàn)方程聯(lián)立消去x,得關(guān)于y的一元二次方程,由根與系數(shù)的關(guān)系和數(shù)量積的坐標(biāo)運(yùn)算即可求出為定值;
(2)設(shè)出直線(xiàn)AB的方程為x=ty+n,與拋物線(xiàn)方程聯(lián)立消去x,得關(guān)于y的一元二次方程,由根與系數(shù)的關(guān)系得出y1y2的值,再由題意列出方程求出n的值,即可得出直線(xiàn)AB過(guò)定點(diǎn);
(3)由題意寫(xiě)出直線(xiàn)AB的方程為y=x﹣a,與拋物線(xiàn)方程聯(lián)立消去y,得關(guān)于x的一元二次方程,由根與系數(shù)的關(guān)系以及判別式△>0,即可求出a的取值范圍.
解:(1)當(dāng)a時(shí),點(diǎn)M(,0),
設(shè)直線(xiàn)l:x=ty,
由,消去x,得
y2﹣2pty﹣p2=0,
所以y1y2=﹣p2,
則x1x2;
x1x2+y1y2p2為定值;
(2)設(shè)直線(xiàn)AB:x=ty+n,
由,消去x,得
y2﹣2pty﹣2pn=0,
所以y1y2=﹣2pn,
又y1y2=m,則﹣2pn=m,即n;
則直線(xiàn)AB過(guò)定點(diǎn)(,0);
(3)由題意:直線(xiàn)AB的方程為:y=x﹣a,
代入拋物線(xiàn)得:x2﹣2(a+p)x+a2=0,
由△=4(a+p)2﹣4a2>0得:a;
x1+x2=2(a+p),x1x2=a2,
所以|AB||x1﹣x2|=22p,
解得a;
所以a的取值范圍是(,].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,,且,,,點(diǎn)在上.
(1)求證:;
(2)若二面角的大小為,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)在上有定義,實(shí)數(shù)和滿(mǎn)足,若在區(qū)間上不存在最小值,則稱(chēng)在上具有性質(zhì).
(1)當(dāng),且在區(qū)間上具有性質(zhì)時(shí),求常數(shù)的取值范圍;
(2)已知(),且當(dāng)時(shí),,判別在區(qū)間上是否具有性質(zhì),試說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右頂點(diǎn)分別為,,左、右焦點(diǎn)分別為,,離心率為,點(diǎn),為線(xiàn)段的中點(diǎn).
()求橢圓的方程.
()若過(guò)點(diǎn)且斜率不為的直線(xiàn)與橢圓交于、兩點(diǎn),已知直線(xiàn)與相交于點(diǎn),試判斷點(diǎn)是否在定直線(xiàn)上?若是,請(qǐng)求出定直線(xiàn)的方程;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在本題中,我們把具體如下性質(zhì)的函數(shù)叫做區(qū)間上的閉函數(shù):①的定義域和值域都是;②在上是增函數(shù)或者減函數(shù).
(1)若在區(qū)間上是閉函數(shù),求常數(shù)的值;
(2)找出所有形如的函數(shù)(都是常數(shù)),使其在區(qū)間上是閉函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),命題p:函數(shù)在內(nèi)單調(diào)遞增;q:函數(shù)僅在處有極值.
(1)若命題q是真命題,求a的取值范圍;
(2)若命題是真命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為正方體ABCD-A1B1C1D1,動(dòng)點(diǎn)M從B1點(diǎn)出發(fā),在正方體表面沿逆時(shí)針?lè)较蜻\(yùn)動(dòng)一周后,再回到B1的運(yùn)動(dòng)過(guò)程中,點(diǎn)M與平面A1DC1的距離保持不變,運(yùn)動(dòng)的路程x與l=MA1+MC1+MD之間滿(mǎn)足函數(shù)關(guān)系l=f(x),則此函數(shù)圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】連續(xù)投骰子兩次得到的點(diǎn)數(shù)分別為m,n,作向量(m,n),則與(1,﹣1)的夾角成為直角三角形內(nèi)角的概率是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】賀先生想向銀行貸款買(mǎi)輛新能源車(chē),銀行可以貸給賀先生N元,一年后需要一次性還1.02N元.
(1)賀先生發(fā)現(xiàn)一個(gè)投資理財(cái)方案:每個(gè)月月初投資元,共投資一年,每月的月收益率達(dá)到1%,于是賀先生決定貸款12元,按投資方案投資,求的值,使得賀先生用最終投所得的錢(qián)還清貸款后,還有120000的余額去旅游(精確到0.01元);
(2)賀先生又發(fā)現(xiàn)一個(gè)投資方案:第個(gè)月月初投資元共投資一年,每月的月收益率達(dá)到1%,則賀先生應(yīng)貸款多少,使得用最終投資所得的錢(qián)還清后,還有120000的余額去旅游(精確到0.01元).
(參考數(shù)據(jù),,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com