11.已知a、b、c是△ABC的三個內(nèi)角A、B、C對應(yīng)的邊,若a=2,b=2$\sqrt{2}$,sinB+cosB=$\sqrt{2}$,則角A的大小為(  )
A.$\frac{1}{3}$πB.$\frac{1}{6}$πC.$\frac{5π}{6}$D.$\frac{1}{6}$π或$\frac{5π}{6}$

分析 利用和差化積可得B,再利用正弦定理即可得出.

解答 解:$sinB+cosB=\sqrt{2}(\frac{1}{{\sqrt{2}}}sinB+\frac{1}{{\sqrt{2}}}cosB)=\sqrt{2}sin(B+\frac{π}{4})$,
從而$sin(B+\frac{π}{4})=1$,∵0<B<π,∴$B=\frac{π}{4}$,
在△ABC中,由正弦定理得$\frac{a}{sinA}=\frac{sinB}$,解得$sinA=\frac{1}{2}$,
又a<b,∴A<B,故$A=\frac{π}{6}$.
故選:B.

點評 本題考查了和差化積、正弦定理,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求下列函數(shù)的最值:
(1)f(x)=sin2x-x(-$\frac{π}{2}$≤x≤$\frac{π}{2}$);
(2)f(x)=x+$\sqrt{1-{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.關(guān)天x的方程x2+4x-a=0在區(qū)間[-3,0]上有兩個相異的實數(shù)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合M={x|-1<x<1},N={x|x2<2},則( 。
A.M∩N=NB.N⊆MC.M∩N={0}D.M∪N=N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某工廠生產(chǎn)甲、乙兩種產(chǎn)品.已知生產(chǎn)甲種產(chǎn)品每噸需耗礦石2t、煤2t;生產(chǎn)乙種產(chǎn)品每噸需耗礦石4t、煤2t.如果甲種產(chǎn)品每噸能獲利600元,乙種產(chǎn)品每噸能獲利800元.工廠在生產(chǎn)這兩種產(chǎn)品的計劃中要求每天消耗礦石不超過8t、煤不超過6t.每天甲、乙兩種產(chǎn)品應(yīng)各生產(chǎn)多少能獲利最大?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的導(dǎo)函數(shù).
(Ⅰ)若f(x)≥ag(x)恒成立,求實數(shù)a的取值范圍;
(Ⅱ)設(shè)n∈N*,證明:$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n+1}$<ln(n+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=(x2+a)•ex在(0,f(0))處的切線與直線y=-8x平行.
(Ⅰ)求a的值.
(Ⅱ)求f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x2-2x-t(t為常數(shù))有兩個零點,g(x)=$\frac{{x}^{2}+t}{x-1}$.
(Ⅰ)求g(x)的值域(用t表示);
(Ⅱ)當(dāng)t變化時,平行于x軸的一條直線與y=|f(x)|的圖象恰有三個交點,該直線與y=g(x)的圖象的交點橫坐標(biāo)的取值集合為M,求M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)$\overrightarrow a$=(1,2),$\overrightarrow b$=(2,4),$\overrightarrow c$=λ$\overrightarrow a$+$\overrightarrow b$且$\overrightarrow c$⊥$\overrightarrow a$,則λ=-2.

查看答案和解析>>

同步練習(xí)冊答案