18.已知二項(xiàng)式${({x+\frac{1}{x}})^n}$的展開(kāi)式中各項(xiàng)的系數(shù)和為256.
(Ⅰ)求n;
(Ⅱ)求展開(kāi)式中的常數(shù)項(xiàng).(結(jié)果用數(shù)字作答)

分析 (Ⅰ)再令x=1,由條件求得n=8,
(Ⅱ)先求出二項(xiàng)式展開(kāi)式的通項(xiàng)公式,再令x的冪指數(shù)等于0,求得r的值,即可求得展開(kāi)式中的常數(shù)項(xiàng)

解答 解:(Ⅰ),由題意可得 2n=256,∴n=8,
(Ⅱ)${({x+\frac{1}{x}})^n}$的展開(kāi)式的通項(xiàng)為T(mén)r+1=C8rx8-2r,令8-2r=0,解得r=4,
∴C84=70

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.下列4個(gè)命題:
(1)若xy=1,則x,y互為倒數(shù)的逆命題;
(2)面積相等的三角形全等的否命題;
(3)若m≤1,則x2-2x+m=0有實(shí)數(shù)解的逆否命題;
(4)若xy=0,則x=0或y=0的否定.
其中真命題(1)(2)(3)(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.給出下列結(jié)論:
(1)函數(shù)f(x)=tanx有無(wú)數(shù)個(gè)零點(diǎn);
(2)集合A={x|y=2x+1},集合 B={x|y=x2+x+1}則A∩B={(0,1),(1,3)};
(3)函數(shù)$f(x)=\frac{1}{2}sinx+\frac{1}{2}|{sinx}|$的值域是[-1,1];
(4)函數(shù)$f(x)=2sin(2x+\frac{π}{3})$的圖象的一個(gè)對(duì)稱中心為$(\frac{π}{3},0)$;
(5)已知函數(shù)f(x)=2cosx,若存在實(shí)數(shù)x1,x2,使得對(duì)任意的實(shí)數(shù)x都有f(x1)≤f(x)≤f(x2)成立,則|x1-x2|的最小值為2π.
其中結(jié)論正確的序號(hào)是(1)(4)(把你認(rèn)為結(jié)論正確的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)$\overrightarrow{a}$,$\overrightarrow$,是任意的非零平面向量,且相互不共線,則下列正確的是( 。
A.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|>|$\overrightarrow$|,且$\overrightarrow{a}$,$\overrightarrow$同向,則$\overrightarrow{a}$>$\overrightarrow$
B.|$\overrightarrow{a}$+$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$|
C.|$\overrightarrow{a}$•$\overrightarrow$|≥|$\overrightarrow{a}$||$\overrightarrow$|
D.|$\overrightarrow{a}$-$\overrightarrow$|≤|$\overrightarrow{a}$|-|$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.三棱錐S-ABC的頂點(diǎn)都在同一球面上,且SA=AC=SB=BC=2$\sqrt{2}$,SC=4,則該球的體積為$\frac{32}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),F(xiàn)1,F(xiàn)2為橢圓的左.右焦點(diǎn),M是橢圓上任一點(diǎn),若$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$的取值范圍為[-3,3],則橢圓方程為( 。
A.$\frac{x^2}{9}+\frac{y^2}{3}=1$B.$\frac{x^2}{6}+\frac{y^2}{3}=1$C.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$+y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.點(diǎn)(1,2)和(-1,m)關(guān)于kx-y+3=0對(duì)稱,則m+k=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.函數(shù)f(x)=ex(2x-1)-ax+a(a∈R),e為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在實(shí)數(shù)x∈(1,+∞),滿足f(x)<0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若直線ax+2y-2=0與直線x+(a+1)y+1=0垂直,則a=$-\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案