9.已知函數(shù)f(x)=x2(x+a)-2(a∈R)在x=2處取得極值.
(1)求實數(shù)a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間,并指出其單調(diào)性;
(3)求函數(shù)f(x)在[-1,3]上的最大值.

分析 (Ⅰ)求出函數(shù)的導(dǎo)函數(shù)f′(x)=3x2+2ax,由x=2處取得極值解a.
(Ⅱ)利用導(dǎo)函數(shù)的符號,求出表達式的解集,即函數(shù)f(x)的單調(diào)遞增區(qū)間,單調(diào)遞減區(qū)間.
(Ⅲ)當(dāng)x變化時,f′(x),f(x)的變化情況列表,求解函數(shù)的最值.

解答 (本小題滿分13分)
解:(Ⅰ)由f(x)=x3+ax2-2得:f′(x)=3x2+2ax,…(2分)
依題意,得f′(2)=12+4a=0,…(3分)
解得:a=-3.…(4分)
(Ⅱ)由(Ⅰ)的結(jié)論知f′(x)=3x2-6x.
故由f′(x)=3x2-6x>0⇒x<0或x>2.…(6分)
由f′(x)=3x2-6x<0⇒0<x<2,…(8分)
即函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,0)和(2,+∞),單調(diào)遞減區(qū)間為(0,2).…(9分)
(Ⅲ)當(dāng)x變化時,f′(x),f(x)的變化情況如下表:

x-1(-1,0)0(0,2)2(2,3)3
f′(x)+0-0+
f(x)-6遞增-2遞減-6遞增-2
…(12分)
由上表可知,當(dāng)x=0或x=3時,函數(shù)取得最大值-2.…(13分)

點評 本題考查函數(shù)的對數(shù)的綜合應(yīng)用,函數(shù)的極值以及函數(shù)的單調(diào)性的應(yīng)用,考查計算能力以及轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知二次函數(shù)f(x)=ax2+bx+c,且f(1)=-b,又3a>2c>b,則$\frac{a}$的取值范圍是($-\frac{7}{8}$,-$\frac{4}{9}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.平面內(nèi)兩定點的距離為6,一動點M到兩定點的距離之和等于10,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,寫出動點M滿足的軌跡方程,并畫出草圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知角α的終邊與$\frac{π}{3}$角的終邊相同.那么$\frac{α}{3}$在[0,2π)內(nèi)的值為$\frac{π}{9}$,$\frac{7π}{9}$,$\frac{13π}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓F1:(x+1)2+y2=16及點F2(1,0),在圓F1任取一點M,連結(jié)MF2并延長交圓F1于點N,連結(jié)F1N,過F2作F2P∥MF1交NF1于P,如圖所示.
(1)求點P的軌跡方程;
(2)從F2點引一條直線l交軌跡P于A,B兩點,變化直線l,試探究$\frac{1}{{|{F_2}A|}}$+$\frac{1}{{|{F_2}B|}}$是否為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)ω為正實數(shù),若存在a,b(π≤a<b≤2π),使得sinωa+sinωb=2,則ω的取值范圍($\frac{1}{4}$,$\frac{1}{2}$)∪($\frac{5}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知曲線C1:ρ=2cosθ,曲線C2:$\left\{\begin{array}{l}{x=5cost}\\{y=4sint}\end{array}\right.$(t為參數(shù)),
(1)化C1為直角坐標(biāo)方程,化C2為普通方程;
(2)若M為曲線C2上一動點,N為曲線C1上一動點,求|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知等比數(shù)列{an}的各項均為正數(shù),公比0<q<1,設(shè)P=$\frac{{a}_{3}+{a}_{9}}{2}$,Q=$\sqrt{{a}_{5}{a}_{7}}$,則a3,a9,P與Q的大小關(guān)系是( 。
A.a3>P>Q>a9B.a3>Q>P>a9C.a9>P>a3>QD.P>Q>a3>a9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法正確的是( 。
A.命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
B.“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
C.“a>1”是“f(x)=logax(a>0,a≠1)在(0,+∞)上為增函數(shù)”的充要條件
D.命題p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,則¬p是真命題

查看答案和解析>>

同步練習(xí)冊答案