分析 (1)直接由題意求出A,及T,得到ω,代入點的坐標(biāo)求得φ,則函數(shù)解析式可求;
(2)利用復(fù)合函數(shù)的單調(diào)性求出f(x)的增區(qū)間,與[0,π]取交集得答案.
解答 解:(1)由題意可知,A=3,$\frac{T}{4}=\frac{π}{3}-\frac{π}{12}=\frac{π}{4}$,T=π,
∴ω=$\frac{2π}{T}=\frac{2π}{π}=2$,
∴f(x)=3sin(2x+φ),
由$f(\frac{π}{12})=3sin(2×\frac{π}{12}+φ)=3$,得$sin(\frac{π}{6}+φ)=1$,
∵0<φ<$\frac{π}{2}$,∴φ=$\frac{π}{3}$.
∴f(x)=3sin(2x+$\frac{π}{3}$);
(2)由$-\frac{π}{2}+2kπ≤2x+\frac{π}{3}≤\frac{π}{2}+2kπ$,解得:$-\frac{5π}{12}+kπ≤x≤\frac{π}{3}+kπ,k∈Z$,
取k=0,得$-\frac{5π}{12}≤x≤\frac{π}{3}$;
取k=1,得$\frac{7π}{12}≤x≤\frac{4π}{3}$.
∴f(x)在[0,π]上的單增區(qū)間為$[0,\frac{π}{3}],[\frac{7π}{12},π]$.
點評 本題考查了由f(x)=Asin(ωx+φ)的部分圖象求函數(shù)解析式,考查了與三角函數(shù)有關(guān)的復(fù)合函數(shù)的單調(diào)性的求法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①④ | C. | ③④ | D. | ②③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{11}$+10 | B. | 2$\sqrt{14}$+10 | C. | 22 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com