非零向量
a
b
滿足
a
b
-2
a
2
b
2=0,|
a
|+|
b
|=1,則
a
b
的夾角的最小值是( 。
A、
π
6
B、
π
3
C、-
π
3
D、-
π
6
考點:數(shù)量積表示兩個向量的夾角
專題:平面向量及應用
分析:
a
b
的夾角為θ,由條件可得cosθ=2|
a
|•|
b
|=2|
a
|(1-|
a
|),利用二次函數(shù)的性質(zhì)求得cosθ的最大值,可得θ的最小值.
解答: 解:設
a
b
的夾角為θ,∵
a
b
-2
a
2
b
2=0,∴|
a
|•|
b
|cosθ=2|
a
|
2
|
b
|
2
,
∴cosθ=2|
a
|•|
b
|.
∵|
a
|+|
b
|=1,∴cosθ=2|
a
|(1-|
a
|),故當|
a
|=
1
2
時,cosθ取得最大值為
1
2
,
此時,θ=
π
3

故選:B.
點評:本題考查向量的數(shù)量積,考查基本不等式的運用,正確運用向量的數(shù)量積是關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=sin(2ωx-
π
6
)-2cos2ωx+1(ω>0)直線y=
3
與函數(shù)f(x)圖象相鄰兩交點的距離為π.
(1)求ω的值;
(2)若g(x)=af(x)+b在[0,
π
2
]上的最大值為
3
+
5
2
,最小值為1,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+bx+c和g(x)=2x+b,若對任意的x∈R,恒有f(x)≥g(x)
(1)證明:c≥1且c≥b
(2)證明:當x≥0時,(x+c)2≥f(x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin2(x)-2(a-1)sinx•cosx+5cos2(x)+2-a,試推斷是否存在常數(shù)a,使f(x)的最大值為6?若存在,求出a值:若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-2ax+3,g(x)=mx+5-2m.
(Ⅰ)若函數(shù)F(x)=f(3x),x∈[-1,1],F(xiàn)(x)的最小值為h(a),求h(a)的解析式;
(Ⅱ)若x∈[1,4],當a=2時f(x)的值域為A,g(x)的值域為B,A∪B=B,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)是冪函數(shù),h(x)=ax-1,f(x)=h(x)-g(x),且函數(shù)f(x)的圖象過點(4,-
7
2
)和(1,1)兩點.
(1)求f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)區(qū)間,判斷函數(shù)在區(qū)間[-2,3]上是否存在最大值或最小值;若存在,求出對應的最值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

銳角三角形ABC的內(nèi)角分別是A,B,C,并且A>B,是否有sinA+sinB>cosA+cosB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:x+my+1=0與l2:mx+y+1=0
(1)當l1⊥l2時,求m;
(2)當l1∥l2時,求m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(x+θ)+
3
cos(x+θ),θ∈[-
π
2
,
π
2
]
,且函數(shù)f(x)是偶函數(shù),則θ的值為
 

查看答案和解析>>

同步練習冊答案