分析 (1)令n=1,由a1=S1,即可得到;
(2)將n換為n-1,相減可得an=$\frac{n-1}{n-2}$an-1,再由累乘法,即可得到所求;
(3)求得bn=$\frac{{a}_{n+3}}{{a}_{n+1}{a}_{n+2}{2}^{{a}_{n+1}}}$=$\frac{n+2}{n(n+1)•{2}^{n}}$=$\frac{1}{n•{2}^{n-1}}$-$\frac{1}{(n+1)•{2}^{n}}$,再由裂項(xiàng)相消求和,化簡(jiǎn)整理,可得k≤$\frac{n}{n+2}$恒成立,求得右邊的最小值,即可得到k的最大值.
解答 解:(1)令n=1,即有2S1=a1-a1=0,
則a1=0;
(2)證明:2Sn=nan,
可得2Sn-1=(n-1)an-1,
相減可得2an=nan-(n-1)an-1,
即有an=$\frac{n-1}{n-2}$an-1,
即有an=a3•$\frac{{a}_{4}}{{a}_{3}}$•$\frac{{a}_{5}}{{a}_{4}}$…$\frac{{a}_{n}}{{a}_{n-1}}$
=2•$\frac{3}{2}$•$\frac{4}{3}$…$\frac{n-1}{n-2}$=n-1,
上式對(duì)n=1,2也成立,
故數(shù)列{an}為首項(xiàng)為0,公差為1的等差數(shù)列,
且an=n-1;
(3)bn=$\frac{{a}_{n+3}}{{a}_{n+1}{a}_{n+2}{2}^{{a}_{n+1}}}$=$\frac{n+2}{n(n+1)•{2}^{n}}$=$\frac{1}{n•{2}^{n-1}}$-$\frac{1}{(n+1)•{2}^{n}}$,
即有b1+b2+…+bn-1=1-$\frac{1}{4}$+$\frac{1}{4}$-$\frac{1}{12}$+$\frac{1}{12}$-$\frac{1}{32}$+…+$\frac{1}{(n-1)•{2}^{n-2}}$-$\frac{1}{n•{2}^{n-1}}$=1-$\frac{1}{n•{2}^{n-1}}$,
b1+b2+…+bn-1≤1-(k+1)bn對(duì)一切正整數(shù)n恒成立,
即為k+1≤$\frac{1}{n•{2}^{n-1}•_{n}}$=$\frac{2(n+1)}{n+2}$,即有k≤$\frac{n}{n+2}$恒成立,
由$\frac{n}{n+2}$=1-$\frac{2}{n+2}$為遞增數(shù)列,即有n=1時(shí)取得最小值,且為$\frac{1}{3}$,
即有k≤$\frac{1}{3}$.則k的最大值為$\frac{1}{3}$.
點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式的運(yùn)用,考查累加法求數(shù)列的通項(xiàng),以及裂項(xiàng)相消求和的方法,考查不等式的性質(zhì),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow{a}$⊥$\overrightarrow$ | B. | $\overrightarrow{a}$,$\overrightarrow$同向 | C. | $\overrightarrow{a}$,$\overrightarrow$反向 | D. | $\overrightarrow{a}$,$\overrightarrow$平行 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com