【題目】已知數(shù)列是等差數(shù)列,其前項(xiàng)和為,,,是等比數(shù)列,,.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前10項(xiàng)和.
【答案】(1);(2).
【解析】分析:(1)設(shè)數(shù)列的公差為,由,解得,從而可得;(2)由,得公比,從而可得,利用分組求和法,結(jié)合等差數(shù)列與等比數(shù)列的求和公式即可得結(jié)果.
詳解:(1)設(shè)數(shù)列{an}的公差為d,
由a1=1,S5=5a1+10d=25,解得d=2,故an=2n-1,
(2)設(shè)數(shù)列{bn-an}的公比為q,
由b1-a1=2,b4-a4=16,得q3==8,解得q=2,
bn-an=2n ,故bn=2n+2n-1,
所以數(shù)列{bn }的前10項(xiàng)和為
T10=b1+b2+…b10=(2+1)+(22+3)+(23+5)+…+(210+19)
=(2+22+…+210)+(1+3+5+…+19)
==2146.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓、拋物線的焦點(diǎn)均在軸上, 的中心和的頂點(diǎn)均為原點(diǎn),平面上四個(gè)點(diǎn), , , 中有兩個(gè)點(diǎn)在橢圓上,另外兩個(gè)點(diǎn)在拋物線上.
(1)求的標(biāo)準(zhǔn)方程;
(2)是否存在直線滿足以下條件:①過(guò)的焦點(diǎn);②與交于兩點(diǎn),且以為直徑的圓經(jīng)過(guò)原點(diǎn).若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正三棱柱的底面邊長(zhǎng)為2, 是側(cè)棱的中點(diǎn).
(1)證明:平面平面;
(2)若平面與平面所成銳角的大小為,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別是, ,且點(diǎn)在橢圓上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的左頂點(diǎn)為,過(guò)點(diǎn)的直線與橢圓相交于異于的不同兩點(diǎn), ,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)從某校高一年級(jí)隨機(jī)抽取名學(xué)生,獲得了他們?nèi)掌骄邥r(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表:
組號(hào) | 分組 | 頻數(shù) | 頻率 |
(Ⅰ)求的值.
(Ⅱ)若,補(bǔ)全表中數(shù)據(jù),并繪制頻率分布直方圖.
(Ⅲ)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,若上述數(shù)據(jù)的平均值為,求,的值,并由此估計(jì)該校高一學(xué)生的日平均睡眠時(shí)間不少于小時(shí)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在游學(xué)活動(dòng)中,在處參觀的第組同學(xué)通知在處參觀的第組同學(xué):第組正離開處向的東南方向游玩,速度約為米/分鐘.已知在的南偏西方向且相距米,第組同學(xué)立即出發(fā)沿直線行進(jìn)并用分鐘與第組同學(xué)匯合.
()設(shè)第組同學(xué)行進(jìn)的方位角為,求.
(方位角:從某點(diǎn)的指北方向線起,依順時(shí)針?lè)较虻侥繕?biāo)方向線之間的水平夾角)
()求第組同學(xué)的行進(jìn)速度為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某投資公司計(jì)劃投資兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),產(chǎn)品的利潤(rùn)與投資金額的函數(shù)關(guān)系為,產(chǎn)品的利潤(rùn)與投資金額的函數(shù)關(guān)系為(注:利潤(rùn)與投資金額單位:萬(wàn)元).
(1)該公司現(xiàn)有100萬(wàn)元資金,并計(jì)劃全部投入兩種產(chǎn)品中,其中萬(wàn)元資金投入產(chǎn)品,試把兩種產(chǎn)品利潤(rùn)總和表示為的函數(shù),并寫出定義域;
(2)怎樣分配這100萬(wàn)元資金,才能使公司的利潤(rùn)總和獲得最大?其最大利潤(rùn)總和為多少萬(wàn)元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計(jì)劃在甲、乙兩座城市共投資120萬(wàn)元,根據(jù)行業(yè)規(guī)定,每個(gè)城市至少要投資40萬(wàn)元,由前期市場(chǎng)調(diào)研可知:甲城市收益P與投入(單位:萬(wàn)元)滿足,乙城市收益Q與投入(單位:萬(wàn)元)滿足,設(shè)甲城市的投入為(單位:萬(wàn)元),兩個(gè)城市的總收益為(單位:萬(wàn)元).
(1)當(dāng)甲城市投資50萬(wàn)元時(shí),求此時(shí)公司總收益;
(2)試問(wèn)如何安排甲、乙兩個(gè)城市的投資,才能使總收益最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com