14.已知函數(shù)f(x)=ex-ax-a,若f(x)≥0恒成立,實數(shù)a的取值范圍是[0,1].

分析 由f(x)=ex-ax-a,f'(x)=ex-a,從而化恒成立問題為最值問題,討論求實數(shù)a的取值范圍.

解答 解:由f(x)=ex-ax-a,f'(x)=ex-a,
若a<0,則f'(x)>0,函數(shù)f(x)單調遞增,
當x趨近于負無窮大時,f(x)趨近于負無窮大;
當x趨近于正無窮大時,f(x)趨近于正無窮大,
故a<0不滿足條件.
若a=0,f(x)=ex≥0恒成立,滿足條件.
若a>0,由f'(x)=0,得x=lna,
當x<lna時,f'(x)<0;當x>lna時,f'(x)>0,
所以函數(shù)f(x)在(-∞,lna)上單調遞減,在(lna,+∞)上單調遞增,
所以函數(shù)f(x)在x=lna處取得極小值f(lna)=elna-a•lna-a=-a•lna,
由f(lna)≥0得-a•lna≥0,
解得0<a≤1.
綜上,滿足f(x)≥0恒成立時實數(shù)a的取值范圍是[0,1].
故答案為:[0,1].

點評 本題考查了導數(shù)的綜合應用及恒成立問題的解法,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.設計一個算法,輸入一個正整數(shù),求出它的所有正因數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某戶外用品專賣店準備在“五一”期間舉行促銷活動,根據(jù)市場調查,該店決定從2種不同品牌的沖鋒衣,2種不同品牌的登山鞋和3種不同品牌的羽絨服中,隨機選出4種不同的商品進行促銷(注:同種類但不同品牌的商品也視為不同的商品),該店對選出的商品采用的促銷方案是有獎銷售,即在該商品現(xiàn)價的基礎上將價格提高150元,同時,若顧客購買該商品,則允許有三次抽獎的機會,若中獎,則每次中獎都獲得m元獎金.假設顧客每次抽獎時獲獎與否的概率都是$\frac{1}{2}$,設顧客在三次抽獎中所獲得的獎金總額(單位:元)為隨機變量X.
(1)求隨機選出的4種商品中,沖鋒衣,登山鞋,羽絨服都至少有一種的概率;
(2)請寫出X的分布列,并求X的數(shù)學期望;
(3)該店若想采用此促銷方案獲利,則每次中獎獎金要低于多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若對任意的x∈[0,1],不等式$\sqrt{1-x}$+$\sqrt{1+x}$≤2-bx2恒成立,則正數(shù)b的最大值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若函數(shù)f(x)=(a+1)x2-2(a-1)x+3(a-1)>0對于一切實數(shù)x恒成立,則a的取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.不等式|$\frac{1-x}{1+x}$|≥1的解集為(-∞,-1)∪(-1,0].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.不等式$\frac{1+|x|}{|x|-1}$≥3的解集是( 。
A.{x|-2≤x≤2}B.{x|-2≤x<-1或-1<x<1或1<x≤2}
C.{x|x≤2且x≠±1}D.{x|-2≤x<-1或1<x≤2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.化簡:
(1)$\sqrt{1-si{n}^{2}α}$;($\frac{π}{2}$<α<π)
(2)$\sqrt{1-sinφ}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.若$\underset{\underbrace{33…3}}{20}$Ω$\underset{\underbrace{88…8}}{20}$能被7整除,求中間Ω的數(shù).

查看答案和解析>>

同步練習冊答案